搜索资源列表
EntropyOutlier
- 查找孤立点 JAVA代码,简单易用,孤立点,即数据中不同于数据一般模型的数据对象,可能由度量或执行错误导致,也可能是固有数据变异性的结果,预示着重要的信息。与一般热门研究课题不同,目前没有任何一款国际认可的软件可以直接对对孤立点进行检测与分析,孤立点检测与分析的算法研究是近年来数据挖掘领域新兴的复杂困难而有意义的课题。在诈骗检测、贷款申请处理、网络入侵检测、时间序列检测、网路性能监视、故障诊断、图像中检测噪声点等方面都有广泛的应用。-outlier detection
hashtable.java
- hashtable 实现缓存整理等功能,table中午对象存在时间过长则序列化进入磁盘-hashtable
geneticVSP
- java的时间序列分析代码 Generic Matlab -Mtalb implemention for Generic arogrithm Matlab implemenation
KafkaDemo
- Kafka是一个高吞吐量分布式消息系统。linkedin开源的kafka。 Kafka就跟这个名字一样,设计非常独特。首先,kafka的开发者们认为不需要在内存里缓存什么数据,操作系统的文件缓存已经足够完善和强大,只要你不搞随机写,顺序读写的性能是非常高效的。kafka的数据只会顺序append,数据的删除策略是累积到一定程度或者超过一定时间再删除。Kafka另一个独特的地方是将消费者信息保存在客户端而不是MQ服务器,这样服务器就不用记录消息的投递过程,每个客户端都自己知道自己下一次应该从什么地
ARMA-Java--master
- ARIMA模型是通过将预测对象随时间推移而形成的数据序列当成一个随机序列,进而用一定的数学模型来近似表述该序列。根据原序列是否平稳以及回归中所包含部分的不同分为AR、MA、ARMA以及ARIMA过程。 在模型的使用过程中需要根据时间序列的自相关函数、偏自相关函数等对序列的平稳性进行判别;而对于非平稳序列一般都需要通过差分处理将其转换成平稳序列(ARIMA);对得到的平稳序列进行建模以确定最佳模型(AR、MA、ARMA或者ARIMA)。在使用中最重要也是最关键的就是对序列进行参数估计,以检验其
新建文本文档 (2)
- 快速排序 对冒泡排序的一种改进,若初始记录序列按关键字有序或基本有序,蜕化为冒泡排序。使用的是递归原理,在所有同数量级O(n longn) 的排序方法中,其平均性能最好。就平均时间而言,是目前被认为最好的一种内部排序方法(Quick sort of an improvement on the bubble sort, if the initial recording sequence by keyword order or order, into a bubble sort. Using a r
thesis
- 几种常见预测算法的Java代码实现,包括时间序列预测法,指数平滑法,灰色模型,灰色马尔科夫(predict the data value of system)