搜索资源列表
LDA
- 线性判别分析(LDA)用于特征选择,可以对数据集或者图像提取有用特征,用于分类或者聚类等机器学习应用中-Linear Discriminant Analysis (LDA) for feature selection, application in dataset or image feature extraction, for classification or clustering applications in machine learning
weka-3-4-12
- weka全名是怀卡托智能分析环境(Waikato Environment for Knowledge Analysis),是一个公开的数据挖掘工作平台,集合了大量能承担数据挖掘任务的机器学习算法,包括对数据进行预处理,分类,回归、聚类、关联规则以及在新的交互式界面上的可视化-full name is weka intelligent analysis environment Waikato (Waikato Environment for Knowledge Analysis), is an o
jqagent
- 多Agent系统的理论与技术,为分布式开放系统的分析、设计和实现提供了一条崭新的途径。然而随着相关领域高新技术的迅猛发展,多Agent系统的运行环境日益趋于大型、开放、动态和不确定,迫切需要采用各种智能技术来构建具有自学习能力的Agent,为多Agent系统引入学习机制使其更好地适应复杂环境,从而导致了多Agent系统学习这一新兴研究领域的产生和迅速发展。多Agent系统学习包括采用机器学习等方法从积累的信息或数据中学习用于支持决策的知识,以及为建立多Agent协作、协调和竞争等机制而进行的对
boost
- boost算法,用于数据模式分析,其原理是机器学习里面的元学习器集成思想,通过弱分类器的集成来实现一个强分类器。-for data pattern analysis.
Applied_Data_Mining
- 《实用数据挖掘》 本书对面向应用的数据挖掘方法进行了清晰的阐述,包括经典的多元统计方法、贝叶斯多元统计方法、基于机器学习的数据挖掘方法和基于计算的数据挖掘方法等。介绍了数据挖掘领域中许多最新的研究成果,如关联规则、序列规则、图示马尔可夫模型、基于存储的推理、信用风险和Web挖掘等。并详细介绍了选自实际工业项目的6个应用实例,强调了数据挖掘方法的实用性。 本书主要面向计算机科学、信息管理、应用统计学和经济学等专业的高年级本科生和研究生。对实际从事海量数据分析和处理的技术人员也有很好的指导作用和
ProgrammingPCollectivePIntelligence
- 本书以机器学习与计算统计为主题背景,专门讲述如何挖掘和分析Web上的数据和资源,如何分析用户体验、市场营销、个人品味等诸多信息,并得出有用的结论,通过复杂的算法来从Web网站获取、收集并分析用户的数据和反馈信息,以便创造新的用户价值和商业价值。全书内容翔实,包括协作过滤技术(实现关联产品推荐功能)、集群数据分析(在大规模数据集中发掘相似的数据子集)、搜索引擎核心技术(爬虫、索引、查询引擎、PageRank算法等)、搜索海量信息并进行分析统计得出结论的优化算法、贝叶斯过滤技术(垃圾邮件过滤、文本过
kmean.tar
- 聚类分析源代码,用C++实现,主要用于机器学习,数据自动分类-K-mean machine learn
JPMorgan...[【方向】].1496414351
- 本文总结了J.P.摩根最新的280 页研究报告中的13亮点,极为详尽地梳理、预测了金融从业者未来都需要具备相关机器学习以及数据分析的能力,分析了金融行业的现状与未来,对于金融从业者以及想从事金融行业者具有重要的借鉴意义。(This paper summarizes the highlights of JP Morgan's latest 280-page study, which is a very good way to predict the future of financial prac
K-Means PCA降维
- K-Means算法,不要求建立模型之后对结果进行新的预测,没有相应的标签,只是根据数据的特征对数据进行聚类。主成分分析降维对数据进行可视化操作,对features进行降维.(K-Means algorithm does not require the establishment of the model after the new prediction of the results, there is no corresponding tag, but only on the character
大数据下的机器学习算法综述
- 研究大数据环境下的机器学习算法成为学术界和产业界共同关注的话题. 文中主要分析和总结当前用于处理大数据的机器学习算法的研究现状.(Developing machine learning algorithms for big data is a research focus. In this paper, the state of the art machine learning techniques for big data are introduced and analyzed.)
机器学习课程2014源代码
- python数据分析,人工智能,吴恩达课程代码(Python data analysis, artificial intelligence, teacher Wu Enda curriculum code)
机器学习与数据挖掘方法和应用
- 本书分为5个部分,共18章,较为全面地介绍了机器学习的基本概念,并讨论了数据挖掘和知识发现中的有关问题及多策略学习方法,具体地阐述了机器学习与数据挖掘在工程设计,文本、图像和音乐,网页分析、计算机病毒和计算机控制,医疗诊断、生物医疗信号分析和水质分析中的生物信号处理等方面的应用情况。本书收集众多不同领域中数据挖掘的实际案例,以此来说明数据挖掘的具体解决方法,以期为广大读者提供一个更为广阔的数据挖掘(The book is divided into 5 parts, 18 chapters, a
《MATLAB 神经网络43个案例分析》源代码&数据
- mtalab初学者的福音,非常适合学习!!!!!!!!!!!(The gospel of Mtalab beginners)
情感分析
- 分类,用于对情感词的统计、排序、分类等 包括源程序、数据拆分程序、训练集和测试集(Classification for statistics, sorting and classification of emotional words Includes source programs, data split programs, training sets, and test sets)
python数据分析 韩波
- 一本python数据分析的优秀资料 《python数据分析》(python data analysis),作者【印尼】Ivan Idris,翻译:韩波。 本人制作的PDF图书,带目录和书签。 作为一种高级程序设计语言,Python凭借其简洁、易读及可扩展性日渐成为程序设计领域备受推崇的语言。同时,Python语言的数据分析功能也逐渐为大众所认可。, 本书是一本介绍如何用Python进行数据分析的学习指南。全书共12章,从Python程序库入门、NumPy数组、matplotlib和pa
基于PCA的SVM分类
- 选择“BreastCancer”数据集,使用支持向量机(SVM)对其进行分类。作为对比,第一次对特征集直接进行支持向量机分类,第二次对特征集进行主成分分析法的特征提取后,再对特征提取后的特征集进行支持向量机分类。并且对比和分析了两次分类的结果。(The BreastCancer data set is selected and classified by Support Vector Machine (SVM). For comparison, the first time the featur
基于粒子群优化算法的特征选择SVM分类
- 针对“BreastCancer”数据集,作为对比,第一次对特征集直接进行SVM分类,第二次使用粒子群算法进行特征选择后再进行SVM分类。并且对比和分析了两次分类的结果。(For "BreastCancer" data set, as a comparison, the first time the feature set is directly classified by SVM, and the second time the feature set is selected
k均值聚类
- 通过比较自编MATLAB 的k-means 算法程序和SPSS 中自带的k-means聚类工具,对两个数据集聚类,并分析了聚类结果。(By comparing the k-means algorithm program of self-compiled MATLAB with the K-means clustering tool of SPSS, two data sets are clustered and the clustering results are analyzed.)
Python机器学习基础教程(完整电子版)
- 本书是机器学习入门书,以Python语言介绍。主要内容包括:机器学习的基本概念及其应用;实践中最常用的机器学习算法以及这些算法的优缺点;在机器学习中待处理数据的呈现方式的重要性,以及应重点关注数据的哪些方面;模型评估和调参的高级方法,重点讲解交叉验证和网格搜索;管道的概念;如何将前面各章的方法应用到文本数据上,还介绍了一些文本特有的处理方法。(This book is an introduction to machine learning, introduced in Python langua
python基础数据分析实例
- 假设要分析的数据包括属性age。数据元组的年龄值为(按递增顺序)13、15、16、19、20、20、21、22、22、25、25、25、25、25、30、33、35、35、35、36、40、45、46、52、70。另外,假设一家医院用上述年龄属性对所选样本受试者的年龄和体脂数据进行测试,得到结果,并执行下列操作: 1、将上述数据保存在逗号分隔值文件中。 2、将逗号分隔值文件中的数据读入R中的变量。 3、年龄和脂肪百分比的平均、中等和标准差是多少? 4、这个时代的模式是什么?评论数据的形式(即双峰