搜索资源列表
-
0下载:
这是最新的MIRACL的最新版本,支持多种算法,如IBE加密、签名、验证-MIRACL is a Big Number Library which implements all of the primitives necessary to design Big Number Cryptography into your real-world application. It is primarily a tool for cryptographic system implementors. RSA
-
-
2下载:
DH密钥交换协议实现,完成建立相同密钥的过程-key exchange protocol implement
-
-
0下载:
通过miracl大数库生成rsa密钥,并通过diffie-hellman算法交换密钥-Miracl large numbers through the database to generate rsa key, and algorithm diffie-hellman key exchange
-
-
0下载:
Step 1: Generating a Parameter Set for the Diffie‐Hellman Key Agreement Algorithm
Step 2: Generating a Secret Key Using the Diffie‐Hellman Key Agreement Algorithm
Step 3: Use UDP to exchange DH public key
Step 4: Establish an AES‐256 encrypted
-
-
0下载:
Diffie-Hellman 密钥交换协议算法。真实模拟,可以实际运行。-Diffie-Hellman key exchange protocol algorithm. The real simulation, can actually run.
-
-
0下载:
通过本程序 你可以更好的理解Diffie-Hellman 密钥交换算法 当然也能将该程序应用到网络安全的编程当中去-Through this program you can better understand the Diffie-Hellman key exchange algorithm is of course the program can also be applied to network security, programming them to
-
-
0下载:
i have attached the source codes of diffie hellman key exchange,rsa algorithm,elgamal client server algorithm,miller - rabin algorithm .
-
-
0下载:
理解 Diffie-Hellman 密钥交换协议的基本思想。了解Diffie-Hellman 密钥交换协议的基本步骤。模拟实现简单的Diffie-Hellman 密钥交换协议过程。
-Understanding Diffie-Hellman key exchange protocol the basic idea. Learn Diffie-Hellman key exchange protocols basic steps. Simulation to achieve a simple
-
-
0下载:
Handle a diffie-hellman key exchange initialisation.
-
-
0下载:
Diffie-Hellman:一种确保共享KEY安全穿越不安全网络的方法,它是OAKLEY的一个组成部分。Whitefield与Martin Hellman在1976年提出了一个奇妙的密钥交换协议,称为Diffie-Hellman密钥交换协议/算法(Diffie-Hellman Key Exchange/Agreement Algorithm).这个机制的巧妙在于需要安全通信的双方可以用这个方法确定对称密钥。然后可以用这个密钥进行加密和解密。但是注意,这个密钥交换协议/算法只能用于密钥的交换,而
-
-
0下载:
Diffie hellman key exchange source code in C language for client server application
-
-
0下载:
Implement Diffie-Hellman Key exchange protocol and demonstrate that at the
end, both person will have a common Key.
Do the following:
1. Set a variable p ( e.g. p = 37) and g (e.g. g = 5).
2. Generate a, a random number mod p. Now generate A,
-