搜索资源列表
KPCAandPCA
- 含有pca和kpca算法,具有很好的在图像处理方面的应用-contain pca and kpca algorithm, is very good in image processing the application
rtejfgds
- 现有的代数特征的抽取方法绝大多数采用一维的方法,即首先将图像转换为一维向量,再用主分量分析(PCA),Fisher线性鉴别分析(LDA),Fisherfaces式核主分量分析(KPCA)等方法抽取特征,然后用适合的分类器分类。针对一维方法维数过高,计算量大,协方差矩阵常常是奇异矩阵等不足,提出了二维的图像特征抽取方法,计算量小,协方差矩阵一般是可逆的,且识别率较高。-existing algebra feature extraction method using a majority of th
BasedonprincipalcomponentanalysisoftheFaceRecognit
- 在特征提取阶段,研究了PCA, 2DPCA, (2D) 2PCA, DiagPCA, DiagPCA-F-2DPCA等多 种方法。不同于基于图象向量的PCA特征提取,由于2DPCA, (2D) ZPCA, DiagPCA和 DiagPCA-I-2DPCA的特征提取都直接基于图象矩阵,计算量小,所以特征的提取速度明 显高于PCA方法。-In the feature extraction stage, the study of the PCA, 2DPCA, (2D) 2PCA,
kpca
- 主成分分析,人脸识别,模式识别,对图像处理有点帮助-Principal component analysis, face recognition, pattern recognition, image processing for a little help
kpca
- 图像压缩的功能,提取图像信息以及最后的图像增强-image enhancement
pcakpca
- 图像降维方法pca和kpca的matlab程序-Image dimensional reduction pca and kpca the matlab program
kpca
- 基于matlab的二维图像的KPCA特征提取-KPCA feature extraction from image by matlab
KPCA
- 在ORL或Yale标准人脸数据库上完成模式识别任务。用PCA与基于核的PCA(KPCA)方法完成人脸图像的重构与识别试验. -Or Yale in the ORL face database, complete the standard pattern recognition tasks. With the PCA and kernel-based PCA (KPCA) method to complete the reconstruction of face image and reco
kpca
- kpca程序代码,用于图形图像处理,很经典的算法程序-kpca code for the graphic image processing, it is the classic algorithm program
KPCA
- KPCA主要在图像去噪声方面有应用。此外还可以进行特征提取,降维使用.-KPCA major noise in the image to have the application. You can also feature extraction using dimension reduction.
kpca
- 图像识别中的降维算法,KPCA算法,主要使用了线性代数和矩阵的知识。-Image recognition of the descending dimension algorithm, KPCA algorithm, the main use of the knowledge of linear algebra and matrix
PCA-KPCA
- 模式识别特征提取,及扩展后的和特征提取,处理图像的时候可以考虑-Pattern recognition feature extraction, and expanded and feature extraction, image can be considered
kpca
- kPCA程序,输入相应的参数后,可以直接运行,能应用到图像的特征提取与去噪等方面-kPCA program input parameters can be run directly, can be applied to image feature extraction and denoising
2DKPCA
- 实现2维核PCA的图像特征提取及识别功能-2-dimensional KPCA image feature extraction and recognition
KPCA
- 子空间的方法,KPCA matlab程序,可以实现对掌纹图像的特征提取和匹配。-Subspace methods, KPCA matlab program, you can achieve the palmprint image feature extraction and matching.
SAR_KPCA
- 基于核函数的SAR图像目标识别,利用KPCA对SAR图像进行特征提取-SAR image target recognition based on kernel function,Use KPCA SAR image feature extraction
PCA-KPCA
- 主成分分析(Principle Component Analysis, PCA)是最为常用的特征提取方法,被广泛应用到各领域,如图像处理、综合评价、语音识别、故障诊断等。-Principal component analysis (Principle Component Analysis, PCA) is the most commonly used feature extraction methods are widely applied to various fields, such as
KPCA
- KPCA Algorithm (image processing)
kPCA
- 实现kPCA算法,用于数据降维图像处理等多领域。本程序包可选用多种核函数,且可以直接增添新的数据点,方便快捷。(KPCA algorithm, for data reduction, image processing and many other fields. This package can use a variety of kernel functions, and can directly add new data points, convenient and quick.)
PCA,KPCA完整程序
- 降维,用作聚类算法使用。具有很好效果,可以用作图像去噪(Dimensionality reduction is used as a clustering algorithm. It has good effect and can be used for image denoising.)