搜索资源列表
kernel-density-estimation.rar
- 一种核密度估计,或者称作带宽选择的方法,可以估计二维尺度参数,至于多维以上的估计方法尚在开发,多维情况下个人经验好的方法是多次实验取较好值,kernel density estimation, bandwidth selection, two-dimensional scale parameter can be estimated ,for the multi-dimensional approaches are still under development, multi-dimensiona
kernel-density-
- 核密度估计 R语言编写的源代码 直接下载 帮助文件-Kernel density estimation written in R source code to download the help file
gkdj
- 以为高斯和密度估计,使用高斯核的非参数密度估计方法,对样本进行概率密度估计,程序中给出了窗宽的估算公式。-That the Gaussian and density estimation, using Gaussian kernel non-parametric density estimation method, the sample probability density estimates, the program gives the formula for bandwidth estim
1
- 自适应核密度估计运动检测方法 提出一种自适应的核密度(kernel density estimation, KDE)估计运动检测算法. 算法首先提出一种自适应前景、背景阈值的双阈值选择方法, 用于像素分类. 该方法用双阈值能克服用单阈值分类存在的不足, 阈值的选择能自适应进行, 且能适应不同的场景. 在此基础上, 本文提出了基于概率的背景更新模型, 按照像素的概率来更新背景, 并利用帧间差分背景模型和KDE分类结果, 来解决背景更新中的死锁问题, 同时检测背景的突然变化. 实验证明了所提出
background_substraction
- 视频背景非参数估计论文及matlab实现.matlab代码只实现了灰度图的背景估计,论文利介绍的彩色视频处理方法可以自己看看怎么做。-Background and Foreground Modeling Using Nonparametric Kernel Density Estimation for Visual Surveillance AHMED ELGAMMAL, RAMANI DURAISWAMI, MEMBER, IEEE, DAVID HARWOOD, AND LA
kde.tar
- kde全称是kernel density estimation.基于核函数的概率密度估计方法。是模式识别中常用的算法之一-KDE which is kernel density estimation is used to estimate probabilty function. It is mostly used in pattern recogntion
kde2d
- fast and accurate state-of-the-art bivariate kernel density estimator
kde
- Kernel Density Estimation (Set of tools for nonparametric (kernel) density estimation)
KDE
- Bivariate Kamma Kernel Density Estimate for large data set-optimize method
gkde
- Gaussian Kernel Density Estimation Demonstration
kdemcode
- Reliable and extremely fast kernel density estimator for one-dimensional data
nhist
- estimate kernel density in matlab
gkde
- KDE function or kernel density function for the estimation of a continuous density
density
- machine learning-Density Estimation objects. parzen - Parzen s windows kernel density estimator indep - Density estimator which assumes feature independence bayes - Classifer based on density estimation for each class gauss - Normal distr
density
- kernel density estimation MATLAB
density
- 计算核密度估计的一个程序,内置多种函数。可以修改原始数据。-Computing kernel density estimation program built many functions. You can modify the original data.
Kernel-Density-Estimator
- 核密度估计的源码,kernel density estimation,从官方渠道获得-Source kernel density estimation, kernel density estimation
kernel-density-estimation
- 本程序是核密度函数的运用。对于大量的数据,而且分部成离散状态时,采用核密度分析是有效的。-This procedure is to use kernel density function. For large amounts of data into discrete segments and state, the use of nuclear density analysis is valid.
Nonparametric kernel density
- 计算数据的累计概率密度,采用三次样条插值计算分位点的值,区间预测,里面有具体程序及相关文献。(The cumulative probability density of the calculated data is calculated by three spline interpolation)
kernel density estimate
- 核密度估计得背景提取的改进,通过关键桢获得背景模型(Improvement of background extraction of kernel density estimate)