搜索资源列表
EGYPT-v1.0.tar
- EGYPT是一套JHU专门为统计机器翻译开发的,针对IBM公司提出的信源-信道模型的统计机器翻译训练包。训练结果可以生成针对IBM统计机器翻译所需要的训练参数。-EGYPT is a JHU specifically for the development of statistical machine translation. against IBM's source-channel model of statistical machine translation training packag
OFDMSIMULATE
- OFDM仿真 参数: % 子载波数 128 % 位数/ 符号 2 % 符号数/ 载波 1000 % 训练符号数 0 % 循环前缀长度 8 (1/16)*T % 调制方式 4-QAM % 多径信道数 3 % IFFT Size 128 % 信道最大时延 2 -OFDM simulation parameters : % subcarriers median number of 128% / 2% Symbol Symbol / Carrier Tra
ofdm_gitosimulink
- This simulation simulates coded OFDM using RS Code over wireless channel This simulation simulate wireless Coded OFDM over mobile multipath fading channel. The model use QPSK, Reed-Solomon Channel Coding, and training based channel estimation -Th
dfsdfgsdtgregdfs
- OFDM程序 波形如下 子载波数 128 % 位数/ 符号 2 % 符号数/ 载波 100 % 训练符号数 0 % 循环前缀长度 8 (1/16)*T % 调制方式 4-QAM % 多径信道数 3 %IFFT Size 128 % 信道最大时延 2-OFDM waveform procedures following subcarriers median number of 128% / 2% Symbol Symbol / Carrier 100% Tr
ofdm-mmse-MATLAB.rar
- 基于训练序列的OFDM的信道估计,用MATLAB仿真实现,Based on the training sequence of the OFDM channel estimation, using MATLAB simulation
training
- 用于信道估计的LS算法仿真 我们对基于信道估计的训练序列进行了一个详细的研究,此种训练序列是用在中继节点的转接放大设计上。-we provide a complete study on the training based channel estimation issues for relay networks that employ the amplify-and-forward (AF) transmission scheme.
GSM_fundamental_principal
- GSM基本原理介绍,主要讲GSM系统架构、接口、信令流程、信道管理等等。很不错培训资料-The basic principles of GSM, the main speaker GSM system architecture, interfaces, signaling processes, channel management. Very good training materials
trainingbasedchannelequalization
- training based channel equalization
mimo
- MIMO系统信道估计算法研究 针对LS算法的分析结论所进行的仿真,将根据分析结果,对信噪比的取值、训练序列的长度以及最优训练的选取,分别进行仿真实验。-MIMO systems channel estimation algorithm for the LS algorithm for the analysis of the conclusions of the simulation, the results of the analysis will be based on the signa
ofdmRK777
- This simulation simulate wireless Coded OFDM over mobile multipath fading channel. The model use QPSK, Reed-Solomon Channel Coding, and training based channel estimation.
separation
- 采用子带GMM建模和贝叶斯理论来实现单信道混合语音的分离。主要分训练和分离两个阶段-Using sub-band GMM modeling and Bayesian theory to achieve the single-channel mixed audio separation. Mainly consists of two stages: training and separation
MIMO-Communication-Systems
- 这是一个基于空时分组编码的MIMO_OFDM通信系统的仿真设计。此系统包括QPSK调制解调,IFFT调制,空时编解码,基于训练符号的信道估计等通信模块。 -This is a space-time block coding based on the MIMO_OFDM Communication System Simulation and Design. This system consists of QPSK modulation and demodulation, IFFT modula
BlindEqualizationBasedonGeneticAlgorithm
- 盲均衡技术能够仅利用接收信号的统计特性对信道特性进行均衡,克服了传统自适应均衡技术需要训练序列、降低系统有效信息传输率的缺陷,成为目前的研究热点。本文简单介绍了通信中的盲均衡技术,并针对一个简单的信道模型给出了基于遗传算法的盲均衡算法。仿真结果表明,多次迭代的盲均衡的均值能够很好地代表未知信道的性能。 -Blind equalization was an adaptive equalization technique,which could equalize the properties o
STBC_MIMO_OFDM
- 这是一个基于空时分组编码的MIMO_OFDM通信系统的仿真设计。此系统包括QPSK调制解调,IFFT调制,空时编解码,基于训练符号的信道估计等通信模块。希望对大家有帮助! -This is based on the space-time block codes of MIMO_OFDM communication system simulation design. This system includes QPSK demodulation, IFFT modulation, space-t
Channel-Training-and-Estimation
- 一种中继系统中,信道估计算法的训练序列设计以及信道估计算法仿真-Channel Training and Estimation in Distributed Space-Time Coded Relay Networks with Multiple Transmit/Receive Antennas
m
- MIMO-OFDM系统的matlab程序,包括QPSK调制解调、IFFT调制、空时编解码、基于训练符号的信道估计等通信模块-Matlab MIMO-OFDM system procedures, including QPSK modulation and demodulation, IFFT modulation, space-time coding and decoding, symbol-based channel estimation training and other communic
Training-based-channel-estimation
- Training based channel estimation
Superimposed-training
- 叠加训练序列的最小二乘信道估计与最小均方误差均衡,QPSK调制,做了4次迭代估计的性能对比。-superimposed training, least squares (LS) channel estimation, MMSE equalizer, QPSK modulation, 4 times iteration.
training.m
- MIMO channel estimation using training based symbols
channel-estimation
- Performance comparison of RLS and LMS channel estimation techniques with optimum training sequences for MIMO-OFDM systems Performance comparison of RLS and LMS channel estimation techniques with optimum training sequences for MIMO-OFDM systems