搜索资源列表
chengxuzjf
- 实现矩阵的Cholesky分解,用Cholesky分解求ARMA模型的参数并作谱估计,利用分裂基算法求复序列 的DFT.将得到的 解卷绕,得到无跳变的相频特性.计算七类窗函数并给出归一化对数幅频曲线-achieve Matrix Cholesky decomposition, Cholesky decomposition used for ARMA model and the parameters for spectral estimation, the use of split-based a
yanyan
- 把一个256*256的图像分成8*8小块,然后进行DFT变换,分别比较在空间域和频域内对图像进行二次抽样和差值最后得出的图像比较-1. Get a grey level image which size is N*N. (For example, 256*256, however, N = ), and partition to 8*8 sub images. 2. Apply DFT to these sub images, and get the fourier transfo
DFT2D
- 采用OPENCV封装的图像二维DFT运算,通过该类可生成图像二维傅里叶变换矩阵,通过可选参数可调整生成傅里叶矩阵、傅里叶频谱同时可选择对数加强属性增强傅里叶频谱的显示效果。-OPENCV package using two-dimensional DFT computation of image, the image can be generated through such two-dimensional Fourier transform matrix generated by the op
efficient_registration
- 利用傅里叶变换,在频域上对两幅图像配准,是一种比较配准的新方法,但是对弹性配准的效果不是很好 需要进一步的研究。-Registers two images (2-D rigid translation) within a fraction of a pixel specified by the user. Instead of computing a zero-padded FFT (fast Fourier transform), this code uses selective upsamp
1
- 将一幅256*256的图像分成8*8的小块,对其进行DFT变换。分别比较在空间域和频域内对源图像进行二次抽样和差值最后比较不同-1. Get a grey level image which size is N*N. (For example, 256*256, however, N = ), and partition to 8*8 sub images. 2. Apply DFT to these sub images, and get the fourier transfor
1122zhenyan
- 这个是C制作的源代码。。。 对一幅图像进行DFT变换,分别对源图像在空间域和频域里进行二次抽样和差值,最后得出结果比较。- Get a grey level image which size is N*N. (For example, 256*256, however, N = ), and partition to 8*8 sub images. Apply DFT to these sub images, and get the fourier transformed ima
AnewdiscretefractionalFouriertransform
- A new discrete fractional Fourier transform based on constrained eigendecomposition of DFT matrix by Lagrange multiplier method
DFT
- DFT,傅里叶变换的C程序,使用傅里叶矩阵变化算法-DFT, Fourier transform of C programs, changes in algorithm using Fourier matrix
assign3_m100295cs
- a) On sample artificial, 8X8 / 16X16 images, take the DFT, DCT, WT, & HT. Print the image & transform matrix side by side b) Repeat the above on real images of size 256X256, and display the transform coefficients as 8-bit intensity images along
fconv
- FFTD(T) performs a "Dimensionless DFT" on the columns of T. T may be real or complex. T may be any size. Returns the dimensionless (unitless) vector D and the universal Basis matrix B such that- FFTD(T) performs a "Dimensionless DFT" on the
acnv
- FFTD(T) performs a "Dimensionless DFT" on the columns of T. T may be real or complex. T may be any size. Returns the dimensionless (unitless) vector D and the universal Basis matrix B such that- FFTD(T) performs a "Dimensionless DFT" on the
computedftmatrix
- compute dft matrix, creates a W matrix of size N
DFT
- matlab编的短时傅里叶变换,matlab中的矩阵的基本运算命令,适合初学者-Matlab compiled short-time Fourier transform, the matrix of the basic computing matlab orders, is suitable for beginners
test1
- 对矩阵进行横向和纵向的分割,然后各块再求和平均,组合成新的矩阵,然后横向或者纵向连接,便于求DFT。-Matrix of horizontal and vertical split, then each block and then summing the average, combined into a new matrix, then the horizontal or vertical connection, easy to seek the DFT.
efficient_registration
- 利用傅里叶变换,在频域上对两幅图像配准,是一种比较配准的新方法,但是对弹性配准的效果不是很好 需要进一步的研究。-Registers two images (2-D rigid translation) within a fraction of a pixel specified by the user. Instead of computing a zero-padded FFT (fast Fourier transform), this code uses selective upsamp
toc
- A fast Fourier transform (FFT) is an algorithm to compute the discrete Fourier transform (DFT) and its inverse. Fourier analysis converts time (or space) to frequency and vice versa an FFT rapidly computes such transformations by factorizing the DFT
unit_opt
- The architecture of this set of codes and the interaction among them is shown in Figure 1. The main testing code main code.m calls the code riemann grad unit opt.m that performs Riemannian optimization under unitary matrix constraint. Steepest De
dft
- 其中dft.m 是通过该程序同时输出图片1,2的R、G、B三通道的DFT正反变换图、相角图、幅度图,图片1,2的彩色DFT正反变换图以及DFT后图片1,2幅度相位信息置换后的彩色结果图。 dct.m是通过该程序显示“实验室用原图像”中的图片3的R、G、B三通道DCT正反变化对比图,变换系数图以及彩色DCT正反变换图。 compress.m是通过该程序输出图片3的保留n个DCT变换系数重构彩色结果图。需要说明的是其中决定保留系数个数n的mask矩阵需要手动更改。-Wherein
DigitalImageProcess
- DFT.m:计算一幅图像的DFT,并在屏幕上显示频谱图,将频谱原点移到图像中间。 zhifangtu.m:用直方图均衡算法对一幅图像进行增强。 fenge.m:设计一种算法自动从灰度图像上求得全局分割阈值,将一幅图像中的目标和背景分隔开,使这幅图像的目标和背景有着不同的平均灰度。 gongshengjuzhen.m:求出一幅图像的像素和有下一个像素的共生矩阵。 OpenAndClose.m:实现二值形态学的膨胀、腐蚀、开操作、闭操作。-DFT.m: Calculates the
Disfrft
- 特征分解型求取离散分数阶傅里叶变换 特征分解算法通过求DFT的核矩阵F(k,n)的特征值 和特征向量构造DFT核矩阵的分数幂,以此作为Fa(k,n) 来计算DFrFT。(The kernel matrix eigenvalue decomposition algorithm for DFT F (k, n) characteristic value And the feature vectors are constructed as the fractional powers of the DF