搜索资源列表
-
5下载:
EM算法Matlab实现。最大期望(EM)算法是在概率(probabilistic)模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variable)-EM algorithm by Matlab. Maximum expected (EM) algorithm is probabilistic (probabilistic) model to find maximum likelihood parameter estimation or m
-
-
2下载:
实现混合高斯模型的聚类算法 利用最大似然估计和最大期望的方法来实现混合高斯模型-Gaussian mixture model to achieve clustering algorithm using the maximum likelihood estimation and the greatest way to achieve the desired mixed-Gaussian model
-
-
0下载:
Implements Maximum likelihood estimation of beta and other parameters for model of stock portfolio vs. index using kalman filter
-
-
0下载:
In statistics, an expectation-maximization (EM) algorithm is a method for finding maximum likelihood or maximum a posteriori (MAP) estimates of parameters in statistical models, where the model depends on unobserved latent variables. EM is an iterati
-
-
0下载:
EM algorithm is to solute the problem of parameter maximum likelihood estimation by Dempster, Laind, Rubin in 1977. The EM algorithm can estimate maximum likelihood only through incomplete data set.
-EM algorithm is to solute the problem of parame
-
-
1下载:
求解参数估计的常用算法——EM,即期望最大化算法,用于代替样本量不完全时的极大似然估计算法。-Common algorithm for solving parameter estimation- EM, expectation maximization algorithm is used to replace the sample size is not completely at the maximum likelihood estimation algorithm.
-
-
0下载:
本算法包括最大似然估计,最小二乘估计,基于EM算法的多种混合高斯分布估计,EM算法测试实例,绘制每种分布的plot函数。非常有参考价值!-The algorithm including maximum likelihood estimation, least squares estimation, based on the the many EM algorithm mixed Gaussian distribution is estimated, the EM algorithm test c
-
-
0下载:
Naive bayes classifer的具体实现,使用多模态事件模型表示,提供EM算法用于半监督和无监督学习,最大似然估计用于有监督学习-The Naive bayes classifer implementation, using a multi-modal event model EM algorithm for semi-supervised and unsupervised learning, maximum likelihood estimation for supervised
-
-
0下载:
在统计计算中,最大期望(EM)算法是在概率(probabilistic)模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variable)。最大期望经常用在机器学习和计算机视觉的数据聚类(Data Clustering)领域。
-In the statistical calculations, the maximum expected (EM) algorithm parameter maximum likelihood estimate
-
-
0下载:
em算法计算混合高斯模型的参数估计,极大似然,EM算法用于K均值问题的参数估计。MATLAB实现有代码-em algorithm Gaussian mixture model parameter estimation, maximum likelihood parameter estimation for K-means problem EM algorithm. MATLAB implementation code
-
-
1下载:
状态模型的极大似然估计,使用EM算法,以及卡尔曼滤波。-This supplementary note discusses the maximum likelihood esti-mation of state space models using Expectation-Maximization (EM) algorithm and
bootstrap procedure for statistical inference. A Matlab program scr ipt impleme
-
-
0下载:
该算法利用概率论中最大似然估计实现EM算法,通过对理论图像和统计图像的比较得出结果。-The algorithm uses the probability of the maximum likelihood estimate EM algorithm, the results of the comparison of theoretical imagery and statistical image.
-
-
0下载:
EM算法,统计中被用于寻找,依赖于不可观察的隐性变量的概率模型中,参数的最大似然估计。程序用C++实现,注释写得很清晰-Expectation-maximization algorithm,based on Maximum Likelihood Estimation,C++ program
-
-
0下载:
EM算法是在概率模型中寻找参数的最大拟然估计或最大后验估计的迭代算法-EM algorithm is looking for parameters in the probability model of maximum quasi likelihood estimation or maximum a posteriori estimate of the iterative algorithm
-
-
1下载:
在统计计算中,最大期望(EM)算法是在概率(probabilistic)模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variable)。最大期望经常用在机器学习和计算机视觉的数据聚类(Data Clustering)领域。(In statistical calculation, the expectation maximization (EM) algorithm in probability (probabilistic) maximu
-
-
1下载:
在混合高斯模型参数估计方法上有很多方法,例如最大似然函数的EM算法,但是该算法容易出现过拟合,故本文提出了一个变分EM的算法来对参数进行估计,可以避免EM算法中的不足。
下面的示例文件中说明了使用下面的示例文件说明了用法
examplevbem,VBEM M示例文件
faithful.txt数据集为例(The parameters of Gauss mixture model estimation method has a lot of methods, such as the maxim
-
-
0下载:
主要是混合高斯模型的参数估计方法,运用的是最大似然函数EM算法。文件中包含训练数据。(The parameter estimation method of the mixed Gauss model is mainly based on the maximum likelihood function EM algorithm. The file contains training data.)
-
-
0下载:
Functions
kalman_filter
kalman_smoother - implements the RTS equations
learn_kalman - finds maximum likelihood estimates of the parameters using EM
sample_lds - generate random samples
AR_to_SS - convert Auto Regressive model of order k to State
-
-
0下载:
function对数据EM算法进行fit,并对产生的高斯混合模型的最大似然估计进行绘图。输出结构体obj,带有高斯混合模型的参数mu,sigma。(Function carries out fit for data EM algorithm, and draws the maximum likelihood estimation of the Gauss mixture model. The output structure is obj, with the parameter mu and s
-
-
0下载:
在统计计算中,最大期望(EM)算法是在概率模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型依赖于无法观测的隐性变量。最大期望算法经常用在机器学习和计算机视觉的数据聚类(Data Clustering)领域。(In statistical computation, the maximum expectation (EM) algorithm is an algorithm to find the maximum likelihood estimation or the maximum
-