搜索资源列表
FrequencyScaleConversion
- Frequency Scale Conversion From f To f Scale frq2mel mel2frq mel The mel scale is based on the human perception of sinewave pitch. frq2erb erb2frq erb The erb scale is based on the equivalent rectangular bandwidths of the human ear. frq2mi
MFCC
- MFCC (Mel Frequent Cepstral Coefficient) in M-File. epresentation of the short-term power spectrum of a sound, based on a linear cosine transform of a log power spectrum on a nonlinear mel scale of frequency. MFCCs derived as follows: 1. Ta
filterbank
- The idea of a filterbank on a non-linear(mel) frequency scale-filter bank for mel
filterbank_for_speech_signal
- A speech signal filterbank, using melscale frequency and framebanking.- 1. For speech signal can be represented as a discrete sequence of frames (or feature vectors) that can be used as the input to a speech recogniser. Important ideas and technique
Milkshape3D_Importer
- 1。动画规模因素是用来控制动画率。 2。阈值是用来控制多少在进口UV坐标网格/网格。 3。自从MilkShape3D ascii文件不包含信息的速度播放,我用25 fps射击。 * *历史 1。修理几乎所有的动画虫子发现在0.5版本。 2。支持Milkshape3D Ascii文件。 3。使动画更符合Milkshape3D钥匙。 4。纹理路径解决新旧版本的MilkShape3D文件。-This plug-in is
Gammashirp-filter
- In this paper, we figure out the use of appended jitter and shimmer speech features for closed set text independent speaker identification system. Jitter and shimmer features are extracted from the fundamental frequency contour and added to basel
MATLAB
- 梅尔频率倒谱(Mel-Frequency Cepstrum)是一段声音的短时功率谱,基于频率的非线性梅尔刻度(mel scale)的对数能量频谱的线性预先变换- the mel-frequency cepstrum (MFC) is a representation of the short-term power spectrum of a sound, based on a linear cosine transform of a log power spectrum on a nonline
Judge2_mfcc
- 耳蜗实质上相当于一个滤波器组,耳蜗的滤波作用是在对数频率尺度上进行的,在1000HZ下,人耳的感知能力与频率成线性关系;而在1000HZ以上,人耳的感知能力与频率不构成线性关系,而更偏向于对数关系,这就使得人耳对低频信号比高频信号更敏感。Mel频率的提出是为了方便人耳对不同频率语音的感知特性的研究。频率与Mel频率的转换公式为-on logarithm frequency scale, under the 1000 hz, the perception of the human ear and
fenlie2_mian
- 耳蜗实质上相当于一个滤波器组,耳蜗的滤波作用是在对数频率尺度上进行的,在1000HZ下,人耳的感知能力与频率成线性关系;而在1000HZ以上,人耳的感知能力与频率不构成线性关系,而更偏向于对数关系,这就使得人耳对低频信号比高频信号更敏感。Mel频率的提出是为了方便人耳对不同频率语音的感知特性的研究。频率与Mel频率的转换公式为-on logarithm frequency scale, under the 1000 hz, the perception of the human ear and
melfb
- 耳蜗实质上相当于一个滤波器组,耳蜗的滤波作用是在对数频率尺度上进行的,在1000HZ下,人耳的感知能力与频率成线性关系;而在1000HZ以上,人耳的感知能力与频率不构成线性关系,而更偏向于对数关系,这就使得人耳对低频信号比高频信号更敏感。Mel频率的提出是为了方便人耳对不同频率语音的感知特性的研究。频率与Mel频率的转换公式为-on logarithm frequency scale, under the 1000 hz, the perception of the human ear and
rcvoice
- 耳蜗实质上相当于一个滤波器组,耳蜗的滤波作用是在对数频率尺度上进行的,在1000HZ下,人耳的感知能力与频率成线性关系;而在1000HZ以上,人耳的感知能力与频率不构成线性关系,而更偏向于对数关系,这就使得人耳对低频信号比高频信号更敏感。Mel频率的提出是为了方便人耳对不同频率语音的感知特性的研究。频率与Mel频率的转换公式为-on logarithm frequency scale, under the 1000 hz, the perception of the human ear and
learn
- 耳蜗实质上相当于一个滤波器组,耳蜗的滤波作用是在对数频率尺度上进行的,在1000HZ下,人耳的感知能力与频率成线性关系;而在1000HZ以上,人耳的感知能力与频率不构成线性关系,而更偏向于对数关系,这就使得人耳对低频信号比高频信号更敏感。Mel频率的提出是为了方便人耳对不同频率语音的感知特性的研究。频率与Mel频率的转换公式为-on logarithm frequency scale, under the 1000 hz, the perception of the human ear and
mel-scale
- Mel scale and inver mel scale and modified mel scale -自己编写的Mel scale 源码
rastamat
- In sound processing, the mel-frequency cepstrum (MFC) is a representation of the short-term power spectrum of a sound, based on a linear cosine transform of a log power spectrum on a nonlinear mel scale of frequency.
mfcc
- Mel-frequency cepstral coefficients (MFCCs) are coefficients that collectively make up an MFC. They are derived a type of cepstral representation of the audio clip (a nonlinear spectrum-of-a-spectrum ). The difference between the cepstrum and the mel
mfcc
- 语音识别MFCC特征提取matlab代码。 「梅尔倒频谱系数」(Mel-scale Frequency Cepstral Coefficients,简称MFCC),是最常用到的语音特征,此参数考虑到人耳对不同频率的感受程度,因此特别适合用在语音辨识。-Speech recognition MFCC feature extraction matlab code. \ Mel cepstrum coefficient (Mel- scale Frequency Cepstral Coefficien
MFCC1
- 提取语音的MFCC特征参数,在语音识别(Speech Recognition)和话者识别(Speaker Recognition)方面,最常用到的语音特征就是梅尔倒谱系数(Mel-scale Frequency Cepstral Coefficients,简称MFCC)。-MFCC feature parameters extracted speech, speech recognition (Speech Recognition) and speaker verification (Speak
Speech-recognition
- MFCC参数是基于人的听觉特性利用人听觉的屏蔽效应,在Mel标度频率域提取出来的倒谱特征参数。-MFCC parameters is based on human auditory characteristics using human auditory masking effect, in Mel scale frequency domain parameters of cepstrum.
JLDATA
- 摘 要:本论文主要研究了语音识别的基本原理,对语音识别系统的构成进行分析处理,其中包括预处理、特征参数提取、建立模块库、识别匹配几大部分。预处理又包括语音采样、预加重、加窗(汉明窗)、端点检测;特征提取的参数是梅尔频率倒谱系数MFCC。 该语音系统采用的是动态时间伸缩算法(DTW),研究对象是特定人的语音识别,并在MATLAB平台上实现。为了进行后续研究,首先使用电脑中的录音系统录制了阿拉伯数字0—9的语音文件,并转化成 “.wav”格式的文件。-Abstract: This thesis
mfcc
- mfcc used in python mel-scale(mfcc used in python mel-scale)