搜索资源列表
featureselection
- feature seletion的几篇英文论文 采用pso等进化算法实现特征选取
1
- 轴承全寿命数据的各种时域频域特征提取,包括17个时域和13个频域特征-Bearing a variety of life-cycle data in time domain frequency domain feature extraction
BasedonprincipalcomponentanalysisoftheFaceRecognit
- 在特征提取阶段,研究了PCA, 2DPCA, (2D) 2PCA, DiagPCA, DiagPCA-F-2DPCA等多 种方法。不同于基于图象向量的PCA特征提取,由于2DPCA, (2D) ZPCA, DiagPCA和 DiagPCA-I-2DPCA的特征提取都直接基于图象矩阵,计算量小,所以特征的提取速度明 显高于PCA方法。-In the feature extraction stage, the study of the PCA, 2DPCA, (2D) 2PCA,
PSO-SVMface
- 基于PSO训练SVM的人脸识别 利用支持向量机在学习能力方面表现的良好性能,结合核主元分析特征提取方法,将其应用于人脸识别中,该方法在实验中表现了良好的识别性能,为人脸识别领域提供了一条新的识别途径-PSO-based SVM for face recognition training using support vector machine learning ability in the performance of good performance, combined with KPCA
SVMhybridsystem
- A distributed PSOSVM hybrid system with feature selection and parameter optimization -Abstract This study proposed a novel PSO–SVM model that hybridized the particle swarm optimization (PSO) and support vector machines (SVM) to improve the clas
FeatureSelection_MachineLearning
- Feature selection methods for machine learning algorithms such as SVR, including one filter-based method (CFS) and two wrapper-based methods (GA and PSO). The gridsearch is for the grid search for the optimal hyperparemeters of SVR. The SVM_CV is for
Particle-swarm-optimization
- 微粒群优化算法(Particle Swarm Optimization,PSO算法)源于鸟群和鱼群群体运 动行为的研究,是一种新的群体智能优化算法,是演化计算领域中的一个新的分支。它 的主要特点是原理简单、参数少、收敛速度较快,所需领域知识少。该算法的出现引起 了学者们极大的关注,已在函数优化、神经网络训练、组合优化、机器人路径规划等领 域获得了广泛应用,并取得了较好的效果。尽管粒子群优化算法发展近十年,但无论是 理论分析还是实践应用都尚未成熟,有大量的问题值得研究。 -
test
- 引入能直接处理连续型数据的邻域粗糙集约简模型,给出一种基于邻域粗糙集模型和粒子群优化的特征选择算法。仿真实验结果表明该算法可以选择较少的特征,改善分类的能力。-employs the neighborhood rough set reduction model which can process the numerical features directly without discretization. Then the particle fitness function in particl
PSO-and-PSOEM-simulation
- 基于扩展记忆的粒子群优化算法(Particle Swarm Optimization based on memory)-This paper combines SVM with improved PSO (Particle Swarm Optimization with Extended Memory, PSOEM) and then builds PSOEM-SVM forecasting model. The PSOEM searches the solution space intelli
pso_featsel2
- 这是一个粒子群算法(PSO)用于特征选择的matlab函数,用户可以自由选择目标函数优化方向、种群大小、迭代次数等等。-this is an feature selection program with particle swarm optimization of matlab ,you can chose the Function optimization direction the scale of the swarm and the number of the iteration
PPSO-SVMfaceS
- 基于PSO训练SVM的人脸识别利用支持向量机在学习能力方面表现的良好性能,结合核主元分析特征提取方法,将将其应用于人脸识别中,该方法在实验中表现了良好的识别性能,为人脸识别领域提供了一条新的识别途径 已通过测试。 -Good performance, performance in the ability to learn the use of support vector machines based on PSO training SVM face recognition combined
BPSO0f
- A PSO based feature selection implementation. A wrapper based feature selection method.
Another-Particle-Swarm-Toolbox
- 粒子群优化工具箱,采用Matlab编写的PSO程序工具箱-Development Notes for psopt toolbox Future plans (in no particular order): * Performance improvement: Automatically check for existence of constraints, skip boundary-checking if unconstrained. * Performance impro
PSO_TSP
- 利用PSO算法解决下面问题: (1) 函数优化; (2) TSP问题; (3) 属性特征选择;-Use PSO algorithm to solve the following problems: (1) Function Optimization (2) TSP problem (3) property feature selection
PSO
- Rosenbrock函数优化属于无约束函数优化问题,其全局极小值位于一条平滑而狭长的抛物线形状的山谷底部,且为优化算法提供的信息很少,因此找到其全局极小值就显得很困难。根据Rosenbrock函数的这种特性,专门提出了一种改进的PSO算法,该算法引入三角函数因子,利用三角函数具有的周期振荡性,使每个粒子获得较强的振荡性,扩大每个粒子的搜索空间,引导粒子向全局极小值附近靠近,避免算法过早地收敛,陷入局部最优,从而找到Rosenbrock函数的全局极小值。大量实验结果表明,该算法具有很好的优化性能,
PSO
- This paper propose a Firefly algorithm (FA) for optimal placement and sizing of distributed generation (DG) in radial distribution system to minimize the total real power losses and to improve the voltage profile. FA is a metaheuristic algori
PSO
- pso algorithm for feature selecting
vsbganbh
- 使用高阶累积量对MPSK信号进行调制识别,使用matlab实现智能预测控制算法,在MATLAB中求图像纹理特征,使用拉亚普诺夫指数的公式,信号处理中的旋转不变子空间法,基于分段非线性权重值的Pso算法。-Using high-order cumulants of MPSK signal modulation recognition, Use matlab intelligent predictive control algorithm, In the MATLAB image texture f
03-Fixed-Feature-Selection-using-PSO
- Feature Selection Using PSO
code
- 是关于文章Self-Adaptive Particle Swarm Optimization for Large-Scale Feature Selection in Classification的Matlab源代码,希望对从事这个方向的人员有所帮助。(Self-Adaptive Particle Swarm Optimization for Large-Scale Feature Selection in Classification)