搜索资源列表
LCV 局部区域活动轮廓模型
- 这是“An efficientlocalChan–Vesemodelforimagesegmentation”(简称LCV模型)的MATLAB源代码。LCV模型是非常重要局部区域活动轮廓模型,它被广泛使用于各个领域,如MRI大脑图像分割,血管图像分割,图像偏差场纠正。-This is "An efficientlocalChan-Vesemodelforimagesegmentation" (referred to as the LCV model) of the MATLA
vessel_models
- Vessel model for GNC toolbox
LBF
- 这是“Implicit Active Contours Driven by Local Binary Fitting Energy”(简称LBF模型)的MATLAB源代码。LBF模型是非常重要局部区域活动轮廓模型,它被广泛使用于各个领域,如MRI大脑图像分割,血管图像分割,图像偏差场纠正。-This is the "Implicit Active Contours Driven by Local Binary Fitting Energy" (referred to as the LBF mod
edge-detection
- 该代码实现了基于水平集的图像边缘检测,此改进模型不仅适用于血管壁的内膜,也适用于外膜的提取。实验证明,此改进的水平集模型具备有效性和可实现性。-This improved model not only applies to the intravascular blood vessel, but also to extract the outer membrane. Experiments show that the improved level set model proposed in thi
threeM
- 建立了一个空间固定曲率和挠率的三维血管模型,并绘制出三维的图像-Created a space for fixed three-dimensional curvature and torsion vessel model, and draws three-dimensional images
msf_cybership_ii
- cybership 2 model supply vessel
model-fsi
- Ansys计算血管的流固耦合模态命令流文件,可采用分层单元,使用局部坐标系,非对称模态提取方法处理模态。-input file of FSI model for blood vessel using Ansys
Gabor_GLM_FEX
- 视网膜血管检测的Gabor变换和机器学习,教程 本教程将演示如何Gabor变换和广义 的线性模型(GLM)可用于视网膜血管检测 图像。 ,我们将尝试检测视网膜血管从 的训练图像,首先,Gabor滤波器与图像卷积。 GLM将使用Gabor变换的图像特征确定 (独立变量)和容器的位置 为结果(因变量)。- Retinal Vessel Detection by Gabor Transform and Machine Learning, a Tutorial T
Desktop
- This is our model of caratoide bifurcation along with our conference paper.
vessel
- 对于一个管道模型的弹性力学模拟,计算形变和应力(For the elastic simulation of a pipe model, calculate the deformation and stress)