搜索资源列表
svm_toolbox
- 支持向量机工具箱,其中包含MATLAB演示程序和一些基本的函数(计算核函数的函数、支持向量机训练函数和参数选择交叉验证函数等)。-SVM Toolbox, which contains MATLAB demo programs and some of the basic functions (Calculation Kernel function, SVM training function and parameter selection cross-validation functions,
The-data-forecasting-based-on-GRNN
- 通过matlab编程,建立了基于广义神经网络的数据预测,并通过交叉验证进行网络的训练,取得了不错的预测效果-By matlab programming,we established the data forecasting based on generalized regression neural network, and we use corss-validation to train the network,which obtains better forecasting effect.
classifier
- 用matlab实现Part1. 实现一个k近邻分类器,Part 2.实现一个最小二乘分类器,Part 3.实现一个支持向量机分类器,Part 4.在不同数据集上使用交叉验证选择各个算法的参数-Part1. Achieve a k-nearest neighbor classifier, Part 2. Achieve a least-squares classifier, Part 3. Implement a support vector machine classifier, Part 4.
SVM交叉验证
- 支持向量机工具箱,其中包含MATLAB演示程序和一些基本的函数(计算核函数的函数、支持向量机训练函数和惩罚参数参数选择交叉验证函数等)。
knn-softsvm
- knn,最小二乘,softsvm分类器的matlab实现,以及简单的交叉验证等-knn, least squares, soft svm classifier matlab implementation, and simple cross-validation, etc.
交叉验证
- 输入一组数据,从从中随机把样本分为测试数据与验证数据(Random selection of samples from cross validation in a set of access data)
matlab
- 对于一个具体的数据,用交叉验证进行分类,随机森林进行训练,用AUC,AUPR,Precision评价分类器的性能(For a specific data, use cross validation to classify, train random forests, evaluate the performance of the classifier with AUC, AUPR, and Precision.)
lwppredict
- LWP是一种Matlab / Octave工具箱实现局部加权多项式回归(也被称为局部回归/局部加权散点平滑/黄土/ LOWESS和核平滑)。使用此工具箱,您可以使用九个具有度量窗口宽度或最近邻窗口宽度的任意一个内核来拟合任意维度的数据的局部多项式。还提供了一个优化内核带宽的函数。优化可采用留一交叉验证,GCV,AICC、AIC,FPE,T,执行,或单独的验证数据。鲁棒拟合也可用。(LWP is a Matlab/Octave toolbox implementing Locally Weight