搜索资源列表
myknapsack
- a) 0-1背包问题采用的是动态规划法,该算法思想简介如下: 有些问题常常没有办法把它们分成较小数目的子问题,在这种情况下,可以试着把问题分成必要多的子问题,每个子问题又可以分成数目不确定的必要多的子子问题,这样就会产生大量的子问题。如果分得的子问题界限不清,互相交叉,则在大量的子问题中会存在一些完全相同的子问题,因而在解这类问题时,将可能重复多次解同一个子问题。这种重复当然是不必要的,避免的方法可以在解决一个子问题后把它的解(包括其子子问题的解)保留下来,若遇到求解与之相同的子问题的时候,
ArithmeticDesignMethod
- 此文章的算法有迭代法、穷举搜索法、递推法、贪婪法、回溯法、分治法、动态规划法等等,有用的的人可以
流水作业调度
- 用动态规划法-解决流水作业调度的问题,得出最优解-use dynamic programming-solving routine scheduling issues, and the optimal solution
travelingsalesman
- 用动态规划法求解旅行商问题 已经加入注释 欢迎批评指正-dynamic programming method for the traveling salesman problem has joined Notes welcome criticism correction
背包问题的动态规划法算法(c++)
- 数据结构 算法设计与分析背包问题的动态规划法算法-data structure design and analysis of algorithms knapsack problem of dynamic programming algorithm
凸8边形分解
- 动态规划法求解凸8边形分解问题
test1_2
- 求X和Y两个字符串的最长公共子序列。(X和Y字符串分别存放在ASCII码文件2X.txt和2Y.txt中) 要求:根据动态规划法基本设计思想,将实现任务的C语言程序代码和运行结果填写在试卷上。 -Two strings X and Y find the longest common subsequence. (X and Y strings are stored in ASCII files 2X.txt and 2Y.txt in) requirements: According to
duoduantudongtaiguihua
- 多段图问题的动态规划算法设计 1. 掌握有向网的成本邻接矩阵表示法 2. 能用程序设计语言实现多段图问题的动态规划递推算法 3. 基本掌握动态规划法的原理方法.-The issue of multi-stage plan the design of a dynamic programming algorithm. Grasp of the cost to the network adjacency matrix representation 2. Can be used pro
suanfafenxi
- 五个经典的算法分析中的算法及例题,涉及到递归法、回溯法、动态规划法等经典算法-Analysis of the five classical algorithm and the example of the algorithm involves recursive law, retroactive law, such as the classic dynamic programming algorithm
xulie
- 利用动态规划法求解次最长公共子序列问题。-The use of dynamic programming method for solving second longest common subsequence problem.
suanfa
- 编程实现最大子段和问题的求解(分别采用分治法和动态规划法求解)。-Programming the largest sub-segment and the problem solving (respectively divide and conquer and dynamic programming method to solve).
KnapSack
- 动态规划法解背包问题。 结果举例 1、输入: 背包容量:100 物品价值:60 100 120 物品重量:10 20 30-Dynamic programming solution of knapsack problem. Results for example 1、enter: backpack size: 100 items Value: 60 100 120 items Weight: 10 20 30
CommonAlgorithmDesign
- 常用的算法设计方法集合,主要有迭代法、穷举搜索法、递推法、贪婪法、回溯法、分治法、动态规划法-Algorithm commonly used method of collection, mainly iterative, exhaustive search methods, recursion, greedy method, backtracking, divide and conquer, dynamic programming
KnapsackBTDP
- C#实现动态规划法和回溯法解决01背包问题-C# dynamic programming and backtracking to solve knapsack problem 01
AlgorithmCode
- C++版本的各类算法源代码,包括动态规划法、分治法、贪心法、回溯法、分支限界法、概率算法-C++ source code version of the various algorithms, including dynamic programming, divide and conquer, greedy method, backtracking, branch and bound method, probability algorithm
0-1knapsackDynamicProgramming
- 0-1 背包 动态规划法(0-1knapsackDynamicProgramming)-0-1knapsackDynamicProgramming
algorithm2
- 最大子段和/三种方法/c++语言/(内有报告) 蛮力法,动态规划法,分治法。 可比较时间,随机输入数据...... -The largest sub-segment and/three methods/c++ language/(within report) brute force method, dynamic programming, divide and conquer. Comparable time, the random input data ......
maxSubSequenceSum
- 利用动态规划法(完整)求解最大字段和的问题-Dynamic programming (full) to solve the biggest problem of the field and
K-match
- K-近似匹配,动态规划法。输入两个文本和编辑距离k,找出k以内的文本匹配情况。代码很短短,没有相当算法功底很难看懂。最好参考经典的算法设计书籍。-K-approximate matching, dynamic programming method. Two input text and edit distance k, find k within the text to match. The code is a short, not quite algorithms foundation is
Maxsum
- 用蛮力法、分治法、动态规划法实现最大子段和(There is MaxSums in three way.)