搜索资源列表
xujiayshangchuan
- 经验模态分解(Empirical Mode Decomposition,简称EMD)法是美籍华人N. E. Huang等人于1998年提出的,适合于分析非线性、非平稳信号序列,具有很高的信噪比。该方法的关键是经验模式分解,它能使复杂信号分解为有限个本征模函数(Intrinsic Mode Function,简称IMF),所分解出来的各IMF分量包含了原信号的不同时间尺度的局部特征信号。-Empirical Mode Decomposition method (Empirical Mode Dec
package_emd
- 经验模态分解(EMD)算法是通过算法过程定义的,而并非由确定的理论公式定义的,所以对其进行准确的理论分析非常困难,我们目前只能借助大量的数字仿真试验不断对其性能进行深入的研究。 EMD算法的目的在于将性能不好的信号分解为一组性能较好的本征模函数(IMFIntrinsic Mode Function ),且IMF须满足以下两个性质: (1)信号的极值点(极大值或极小值)数目和过零点数目相等或最多相差一个; (2)由局部极大值构成的上包络线和由局部极小值构成的下包络线的平均值为零。(Empiri
G Rilling
- 这是一个使用EMD分解出IMF的例子,一个试验信号由一个tone信号,一个chirp信号,叠加得到,目的是使用EMD将这两个信号分离,得到的预期结果应该是chirp信号在高阶,tone信号在低阶,(原因是chirp信号在各个局部的频率都比tone信号高)。(This is an example of using EMD to decompose the IMF. A test signal consists of a tone signal and a chirp signal. The pur
LMD程序
- 在传统基础上改进的LMD分解程序,根据分解原理编写程序,有些许漏洞。(Based on the traditional LMD decomposition program, the program is written according to the decomposition principle.)
1
- 针对矿浆管道工况调整给泄漏检测带来的干扰,准确提取泄漏信号的特征量是降低泄漏误报、漏报的关键。为此,提出了一种基于经验模态分解(EMD)、Hilbert能量谱与变量预测模型(VPMCD)相结合的泄漏检测方法。该方法首先将压力信号分解成若干个固有模态函数(IMF)之和,然后将IMF分量进行Hilbert变换得到局部Hilbert能量谱,依据能量分布的标准差选择最能准确反映矿浆管道运行工况的局部能量谱作为特征值向量,最后通过VPMCD分类器建立泄漏识别模型。将该方法应用于泄漏检测中,实验结果表明,矿