搜索资源列表
基于支持向量机的手写数字识别(小论文+matlab编程及结果)
- 支持向量机的研究现已成为机器学习领域中的研究热点,其理论基础是Vapnik[3]等提出的统计学习理论。统计学习理论采用结构风险最小化准则,在最小化样本点误差的同时,缩小模型泛化误差的上界,即最小化模型的结构风险,从而提高了模型的泛化能力,这一优点在小样本学习中更为突出。SVM理论正是在这一基础上发展而来的,经过十几年的研究和发展,已开始逐步应用于一些领域。在解决小样本、非线性及高维模式识别问题中表现出许多特有的优势,已经在模式识别、函数逼近和概率密度估计等方面取得了良好的效果。
c02
- [demo.rar] - 增值税发票抵扣联字符识别中的图像倾斜校正方法,很有用 [2007012218032016052.rar] - 目前紧紧支持24种验证码的识别,后续版本将会慢慢加入更多可识别的格式。 [OCR.rar] - OCR光学字符识别代码,思想是背景16值变化,提供勾,圈,叉识别 [javawllt.rar] - 用JAVA编译的局域网聊天程序 v 1.0 ,此聊天程序为学习java语言而开发的 [MySoft.rar] - 一种利用硬盘序列号对
opencv 的手写数字字符识别
- 基于opencv 和机器学习方法的手写数字字符识别(Handwritten numeral character recognition of opencv)
基于机器学习的手写数字识别
- 基于Python机器学习的手写数字识别 基于Python机器学习的手写数字识别(Handwritten digit recognition based on Python machine learning Handwritten digit recognition based on Python machine learning)