搜索资源列表
kjinlin
- K最近邻(k-Nearest Neighbour,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。-K neighbor algorithm
knn
- #k-近邻算法 实现 KNN 分类算法 # 对未知类别属性的数据集中的每个点依次执行以下操作: # (1)计算已知类别数据集中的点与当前点之间的距离 # (2)按照距离递增次序排序 # (3)选取与当前点距离最小的K个点 # (4)确定前K个点所在类别的出现频率 # (5)返回前K个点出现频率最高的类别作为当前点的预测分类(#k-Nearest Neighbor , KNN)
机器学习
- 此算法是对机器学习实战这本书中的K近邻算法进行了代码的详细介绍(K neighbor algorithm of machine learning code explained in detail)
k-nn
- k-nn算法 K-NN算法 ( K Nearest Neighbor, K近邻算法 ), 是机器学习中的一个经典算法, 比较简单且容易理解. K-NN算法通过计算新数据与训练数据特征值之间的距离, 然后选取 K (K>=1) 个距离最近的邻居进行分类或者回归. 如果K = 1 , 那么新数据将被分配给其近邻的类.(k-nnK - NN algorithm (K on his Neighbor, K Nearest Neighbor algorithm), is a classical al