搜索资源列表
munituihuo
- 模拟退火算法解决TSP问题,用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对当前解重复“产生新解→计算目标函数差→接受或舍弃”的迭代,并逐步衰减t值,算法终止时的当前解即为所得近似最优解-Simulated annealing algorithm to solve the TSP problem, combined with solid-annealing simulation optimiza
MoNiTuiHuo
- 模拟退火算法解决函数优化问题,智能信息处理课程的实验,感兴趣的可以下载-Simulated annealing algorithm to solve function optimization problems, the course of the experiment of Intelligent Information Processing, interested can download and see
模拟退火算法
- 提出了一种基于粒子群优化(PSO)算法的径向基(RBF)网络参数优化算法,首先利用减聚类算法确定网络径向基函数中心的个数,再用PSO算法优化径向基函数的中心及宽度,最后用PSO算法训练隐含层到输出层的网络权值,找到神经网络权值的最优解,以达到优化神经网络学习的目的。最后,通过一个实验与最小二乘法优化的神经网络进行了比较,验证了算法的有效性。(Particle swarm optimization (PSO) optimization of RBF network)