搜索资源列表
fastfixedpoint
- 独立分量分析(Independent Component Analysis,简称ICA)是近二十年来逐渐发展起来的一种盲信号分离方法。它是一种统计方法,其目的是从由传感器收集到的混合信号中分离出相互独立的源信号,使得这些分离出来的源信号之间尽可能独立。它在语音识别、电信和医学信号处理等信号处理方面有着广泛的应用,目前已成为盲信号处理,人工神经网络等研究领域中的一个研究热点。 本文简要的阐述了ICA的发展、应用和现状,详细地论述了ICA的原理及实现过程,系统地介绍了目前几种主要ICA算法以及它
JADE
- 实现盲信号分离算法中的JADE算法,该算法收敛速度快,分离效果好,能够实现复值信号的分离,比传统的FASTICA算法性能略好-Blind signal separation algorithm to achieve the JADE algorithm fast convergence, separation effect, to achieve the separation of complex-valued signal, than the traditional FASTICA sligh
mangxinhaoBBS
- 该文件采用BBS算法能够实现盲信号的分离,分离效果很好,输入为两种信号的非线性叠加,经过仿真效果很明显!-The document can be achieved using BBS algorithm for blind signal separation, separation a good effect, input non-linear superposition of two kinds of signals, through simulation effect is obvious!
cubica34
- 该算法以全局最优的方式实现盲源分离,程序调用说明:x为观测信号,y为估计信号-The global optimization algorithm to achieve blind source separation approach, the program calls Descr iption: x for the observed signal, y is estimated signals
maxkurtica
- 一种新的基于峭度的盲源分离开关算法。程序调用说明:该算法程序调用格式为[y,w]=bksa(x),其中x是一个n*T的数据矩阵,y是估计出的源信号矩阵,w是n*n分离矩阵。-A new kurtosis-based switch algorithm for blind source separation. Program calls Note: The algorithm program calls the format [y, w] = bksa (x), where n* T x is a
Bmybbsssl
- 盲信号分离是当前信号处理研究的热点课题之一,在无线数据通信、医学、语音和地震信号处理等领域有着广阔的应用前景。一种基于负熵最大的FastICA算法用于实现盲信号分离。。该方法的基本思路是以非高斯信号为研究究对象,在独立性假设的前提下,对多路观测信号进行盲源分离。在满足一定的条件下,能够从多路观测信号中,较好地分离出隐含的独立源信号。 -Blind signal separation is one of the hot topics of signal processing research
LMS
- 利用LMS算法来进行盲信号分离处理的程序-Using the LMS algorithm for blind signal separation processing procedures
psorfid
- 可以实现粒子群算法与盲源分离算法的结合,比较方便。源信号可以随便替换-PSO algorithm can be achieved with the combination of blind source separation algorithms, more convenient. Source signal can be easily replaced
fastica
- 语音信号盲源分离算法--fastica算法源程序,基于matlab开发环境-Speech signal blind source separation algorithm- fastica algorithm source code, matlab development environment based on
zxl
- 语音信号的盲信号分离算法研究与应用的matlab程序代码-Blind signal separation algorithm research and application of speech signal matlab code
wasobi
- 二阶盲源分离算法,可以分离出在非欠定的情况下的混叠信号-Second-order blind source separation algorithm can be isolated in a non underdetermined situation aliasing
mangyuanfenli
- 国外文献中的JADE盲源分离算法,此程序为源作者编写并更改的程序,可用于多路信号的盲源分离。- Foreign literature JADE blind source separation algorithm, this program is the source program written by the author and change, it can be used for blind source separation of multiple signals.
029861723HOS_MIMO
- 这是一个基于高阶统计量的盲信号分离算法,便于大家参考。-This is a higher-order statistics based on blind signal separation algorithms for easy reference.
blind-recover
- 盲信号分离,能够很好的进行调用,并给出了恢复算法-blind seperation,recover source signal
50118855
- 用于盲信号分离的独立分量分析ICA算法,运行于Matlab,还可以-Used for the separation of fanaticism, independent component analysis (ICA algorithm, running in the Matlab, can also
YGBSS
- 自己编的,基于自然梯度的盲源分离算法,如果想对自然梯度有所了解,可以参考Amari的经典文章。网络上一搜就行。(-own series, based on the natural gradient algorithm blind source separation, if you want to understand the natural gradient. Amari can refer to the classic article. Networks found on a trip.)
盲源分离
- 常用的盲分离算法有二阶统计量方法、高阶累积量方法、信息最大化( Infomax )以及独 立成分分析( ICA )等。这些方法取得最佳性能的条件总是与源信号的概率密度函数假设有关, 一旦假设的概率密度与实际信号的密度函数相差甚远,分离性能将大大降低。本文提出采用 核函数密度估计的方法进行任意信号源的盲分离,并通过典型算例与几种盲分离算法进行了 性能比较,验证了方法的可行性。(The commonly used blind separation algorithms include
2014-03-19-Focuss算法
- 主要实现源信号盲分离,注释比较清楚,能够运行,对于初学者帮助较大(The main source of blind separation of the signal, the note is relatively clear, able to run, for beginners to help larger)
oifection__store
- 用于盲信号分离的独立分量分析ICA算法,运行于Matlab,还可以(Used for the separation of fanaticism, independent component analysis (ICA algorithm, running in the Matlab, can also)
ICADemo
- 在盲源的情况下求解输入信号,我感觉非常有用哦(get the signal of the input)