搜索资源列表
20050825203519291
- 双击即可打开揭压缩监督LVQ神经网络存在神经元未被充分利用以及输入样本和竞争单元之间的信息被浪费等问题.通过将EM算法引入到LVQ神经网络中,提出了基于EM聚类算法的有监督LVQ神经网络(即EMLVQ网络),-LVQ.EMLVQ,EMLVQ(EMLVQ)
Hamming_NN
- Hamming 神经网络从功能上来看是最小Hamming 距离分类器.利用它能够完成不完整输入信息与所存储模式的最小汉明距离分类. Hamming 网络是一个双层神经网络,第一层网(即匹配子网络)是用来计算输入模式与该网络已经学习过的各样本之间的匹配测度.第二层网(即竞争子网络)接收从匹配子网络送来的未知模式与已存各样本的匹配测度,然后经过多次迭代运算就可以求得与输入模式相匹配的样本.-Hamming neural network from the functional point o
SOM
- 自组织竞争神经网络,可以对数据进行无监督学习聚类,本质上是一种只有输入层--隐藏层的神经网络(The self-organized competitive neural network can carry out unsupervised learning clustering of data, which is essentially a neural network with only the input layer hidden layer.)
神经网络入门13课源码
- 神经网络入门13课源码 第一课 MATLAB入门基础 第二课 MATLAB进阶与提高 第三课 BP神经网络 第四课 RBF、GRNN和PNN神经网络 第五课 竞争神经网络与SOM神经网络 第六课 支持向量机( Support Vector Machine, SVM ) 第七课 极限学习机( Extreme Learning Machine, ELM ) 第八课 决策树与随机森林 第九课 遗传算法( Genetic Algorithm, GA ) 第十课 粒子群优化( Part