搜索资源列表
聚类分析程序
- 该文件是一组数据挖掘领域中,聚类分析的有关算法。-the document is a group of data mining areas, cluster analysis of the algorithm.
weka-src.rar
- Weka,一个数据挖掘工具。功能包括:分类、聚类和关联规则等等。这是该开源软件的源代码,版本为3.5.7,Weka, a data mining tool. Features include: classification, clustering and association rules, etc.. This is the open source software source code, version 3.5.7
C++
- 数据挖掘算法源码,有聚类算法、分类算法、神经网络分类算法-Source of data mining algorithms, a clustering algorithm, sorting algorithm, neural network classification algorithm
DBSCAN
- Form1.cs是应用聚类算法DBSCAN (Density-Based Spatical Clustering of Application with Noise)的示例,可以通过两个参数EPS和MinPts调节聚类。 DBSCAN.cs是实现文件,聚类算法的进一步信息请参考“数据挖掘”或者相关书籍 聚类示例数据来自于sxdb.mdb,一个Access数据库-Form1.cs is the application of clustering algorithm DBSCAN (Dens
k
- k平均聚类所谓k均值聚类方法是一种无监督的学习算法,它能用已知类数的数据聚类和预测。-k-average clustter
ant
- 蚁群聚类算法,较好的实现了带聚类数据的聚类,已知了聚类数目。-ant conoly clustering
Cmeansclusteringmethods
- 本算法在vc++6.0中进行实验。分别就分解聚类和C-均值聚类两种方法在IRIS数据集上进行操作。分类前先将数据集中的样本顺序打乱形成混合数据。分解聚类中,采用前100个样本用对分法编制程序将数据分为两类。C-均值聚类采用全部的150个样本,将类别参数K设为3,将数据分为三类。-The algorithm in vc++6.0 in the experiment. Separate cluster and decomposition of two C-means clustering metho
c_mean
- 模式识别中的c聚类算法,用来对不同类别的混合数据进行合理的分类。(Pattern recognition in the C clustering algorithm, used for different categories of mixed data for reasonable classification.)
DBSCAN聚类算法
- 本程序代码完整,需要自己设置两个参数,就能完成对数据进行DBSCAN聚类,得出聚类的点的坐标,所在的集群,以及是否是噪声点。我用这个代码完成了对只有经纬度信息的坐标点的聚类,亲测有效(This program code integrity, you need to set their own two parameters, you can complete the data for DBSCAN clustering, clustering point of the coordinates, w
《MATLAB统计分析与应用》程序与数据
- 数据的导入导出,将数据写入到txt,从TXT读取数据;数据预处理,归一化处理;聚类分析,K均值聚类等(Import and export data, write data to TXT, read data from TXT, data preprocessing, normalization processing, clustering analysis, K clustering, etc.)
Kmeans
- 一个matlab的kmeans聚类算法代码,输入聚类数据和类簇数,输出分好类的数据(A matlab kmeans clustering algorithm code, input cluster data and cluster number, the output of the good class of data)
第9章 聚类分析
- 大数据挖掘,主要包括:数据的分类与聚类分析、智能算法、(Classification and cluster analysis of data)
python实现代码、测试数据集及结果
- 密度距离矩阵优化聚类算法python实现(Python implementation of density distance matrix optimization clustering algorithm)
chameleon-data.tar
- 人脸聚类常用数据集含有10*40张图片,pmg格式(The common dataset of face clustering contains 10*40 picture, PMG format)
irisdata
- 用于聚类的数据集。。。。。。。。。。。。。(Data sets for clustering)
多维GMM聚类
- 该命令实现的是多维情况下的三维数据GMM聚类,该算法的缺点是使用matlab 对于大数据有计算机内存的要求。(This command implements GMM clustering of three-dimensional data in multi-dimensional situation. The disadvantage of this algorithm is that it requires computer memory for large data using matlab
dbscan
- 利用该程序可以实现大数据下的三维点云及二维数据的密度聚类,并对聚类后的结果进行准确提取(Using this program, the density clustering of three-dimensional point clouds and two-dimensional data can be realized, and the clustered results can be accurately extracted.)
模糊聚类R代码
- 模糊c-均值聚类算法 fuzzy c-means algorithm (FCMA)或称( FCM)。在众多模糊聚类算法中,模糊C-均值( FCM) 算法应用最广泛且较成功,它通过优化目标函数得到每个样本点对所有类中心的隶属度,从而决定样本点的类属以达到自动对样本数据进行分类的目的。(Fuzzy c-means clustering algorithm or FCM. Among many fuzzy clustering algorithms, the Fuzzy C-Means algori
模糊聚类分析法(python)
- 运用python进行模糊聚类分析步骤如下:建立数据矩阵;数据标准化;建立模糊相似矩阵;改造相似关系为等价关系;确定分类数(The steps of Python fuzzy clustering analysis are as follows: establishing data matrix; standardizing data; establishing fuzzy similarity matrix; transforming similarity relation into equiv
数据挖掘中聚类算法研究进展_周涛
- 聚类分析是数据挖掘中重要的研究内容之一,对聚类准则进行了总结,对五类传统的聚类算法的研究 现状和进展进行了较为全面的总结,就一些新的聚类算法进行了梳理,根据样本归属关系、样本数据预处理、 样本的相似性度量、样本的更新策略、样本的高维性和与其他学科的融合等六个方面对聚类中近 20多个新算 法,如粒度聚类、不确定聚类、量子聚类、核聚类、谱聚类、聚类集成、概念聚类、球壳聚类、仿射聚类、数据流聚 类等,分别进行了详细的概括。(Clustering analysis is one of the impor