搜索资源列表
spectrumanalysis
- 现代信号分析中,对于常见的具有各态历经的平稳随机信号,不可能用清楚的数学关系式来描述,但可以利用给定的N个样本数据估计一个平稳随机信号的功率谱密度叫做功率谱估计(PSD)。它是数字信号处理的重要研究内容之一。功率谱估计可以分为经典功率谱估计(非参数估计)和现代功率谱估计(参数估计)。功率谱估计在实际工程中有重要应用价值,如在语音信号识别、雷达杂波分析、波达方向估计、地震勘探信号处理、水声信号处理、系统辨识中非线性系统识别、物理光学中透镜干涉、流体力学的内波分析、太阳黑子活动周期研究等许多领域,发
sb
- 一个声纹识别的全代码,包括语音信号的预处理,建模,和识别-one voice code, make voice model
F0F1F2F3
- 语音信号使用lpc线性预测法识别并提取共振峰,共振峰提取技术是语音识别和语音合成的关键。-Using lpc line estimate method identifies and withdraws the resonance in speech signal, the technique of resonance withdraws is the key of the speech understanding and speech synthesis.
duandianm
- 语音端点监测,可以自动识别语音信号的开始和结束-Voice activity monitoring
sinemodel
- 语音建模直接影响语音识别,语音增强等后续工作,这里语音信号利用正弦模型进行建模,仿真结果良好-Voice Modeling a direct impact on speech recognition, speech enhancement and other follow-up work, where the use of sinusoidal model for speech signal modeling, simulation with good results
Fspeechprrocr
- 语音识别变频变调,能够充分发发挥语音信号的作用可直接使用。 -Speech recognition, variable frequency tone into full play the role of the speech signal can be used directly.
Fmelmfccr
- 从说话人的语音信号中提取说话人的个性特征是声纹识别的的关键。主要介绍语音信号特征提取方法中的Mel倒谱系数 -Extracted from the speaker' s voice signal in the speaker' s personality is the key to the voiceprint identification. Introduces the speech signal feature extraction method in Mel cepstra
Vaoeo
- 语音提取与识别,实现对语音信号号基因频率的提取与分析 -Voice extraction and recognition, extraction and analysis of the gene frequency of the voice signal No.
TDTWspeecchh
- 本 文 首先 介绍了语音识别的研究和发展状况,然后循着语音识别系统的处理过程,介绍了语音识别的各个步骤,并对每个步骤可用的几种方法在实验基础上进行了分析对比。研究了语音信号的预处理和特征参数提取,包括括语音信号的数字化、分帧加窗、预加重滤波、端点检测及时域特征向量和变换域特征向量.其中端点检测采用双门限法.通过实验比对特征参数的选取,采用12阶线性预测倒谱系数作为识别参数。详细分析了特定人孤立词识别 -This paper first introduces the research and
DTWMFCC
- 这是一个基于动态时间规整的改进的MFCC参数提取程序,用于后续的语音信号的识别,效果较好。-This is a dynamic time warping based MFCC parameters improved extraction procedures for the identification of the subsequent speech signal, better.
HMM
- 隐马尔可夫模型源代码,对于语音信号识别有很好的作用-Hidden Markov model source code for speech signal recognition have a good effect
BP
- 语音信号识别 BP神经网络的研究 只需要简答的修改就可以了-Speech signal recognition BP neural network research
BPDLX
- 语音信号识别 BP神经网络的研究 只需要简答的修改就可以饿了-Speech signal recognition BP neural network research
HMM
- HMM语音信号识别例程,包含用于MATLAB的语音信号识别工具箱。(Example of speech signal recognition by HMM)
案例1 BP神经网络的数据分类-语音特征信号分类
- 基于BP神经网络的聚类分析数据分类例如语音信号识别(Clustering analysis based on BP neural network)
lab
- 端点检测、基因频率检测、说话人性别识别、GUI界面(Speaker sex identification)
语音识别
- 利用了DTW和HMM语音识别技术,进行了语音识别的仿真(The speech recognition technology is simulated by using DTW and HMM speech recognition technology.)
0到9语音识别
- 实现数字0到9的语音信号的dtw识别,识别率高,(It realizes DTW recognition of speech signals with digits 0 to 9, and has high recognition rate.)
用matlab实现对语音信号的特征进行特征提取
- 这个代码是基于matlab的语音识别的前期处理,有部分特征提取。(This code is based on the pre-processing of speech recognition in matlab, and has partial feature extraction.)
语音识别
- 实现语音识别波形,通过录一段语音,用matlab识别波形并对语音信号进行处理(The waveform of speech recognition is realized. By recording a speech, the waveform is recognized by MATLAB and the speech signal is processed)