搜索资源列表
BP1231
- 这个实例是关于BP网络用于函数逼近,适用于初学者 -example of this is on the network for BP function approximation applied to beginners
wnn
- 小波神经网络程序,收敛性比BP神经网络好,可以避免局部最优,可用于分类,函数逼近等
Appendix_B
- 用于函数逼近的BP算法程序,可在Matlab中调试运行,绝对可行
bpalgorithm1
- BP算法的C语言实现,可用于函数逼近,分类,数据挖掘应用等-BP algorithm C language can be used to function approximation and classification, data mining applications
do03zpyI
- matlab 里用BP网络实现函数逼近的例子-Matlab Lane BP network function approximation example
matlab
- 利用一个单隐层BP网络来逼近一个函数,在改程序中有21组数据。该网络的输入层和输出层的神经元个数均为一。-Using a single hidden layer BP network to approximate a function, in the reform process there were 21 sets of data. The network input layer and output layer are a number of neurons.
BP
- bp神经网络逼近非线性函数,利用matlab-bp neural network approximation of nonlinear function using matlab
BP
- 神经网络拟合函数逼近简单算例,用于简单了解原理,含注释-Neural network the fit function approximation simple example for simple understanding of principles, including the Notes
bianshi
- 用BP网络逼近某曲线函数,在神经网络中邮广泛的应用 是系统辨识的基础。 通过反馈来不断的调整系数,限制了最大循环次数 防止进入死循环,当然如果想要得到更精确的系数可以增大循环次数。 -Using BP network function approximation to a curve, mail is widely used in neural network is the basis of system identification. Through feedback t
dongliangsuanfa
- 采用动量梯度下降算法训练BP网络,证明,一个3层的BP网络能够实现任意的连续映射,可以任意精度逼近任何给定的连续函数。-Using momentum gradient descent algorithm to train the BP network, proved that a three-layer BP network to any continuous mapping can be arbitrary-precision approach any given continuous fun
The-BP-neural-network-
- BP神经网络用于函数逼近代码-The BP neural network for function approximation************************************
bpsinx
- 采用bp神经网络对函数y=sin(x)进行训练,然后用测试集对训练的函数进行测试,也就是函数逼近sin(x)的曲线-Bp neural network using the function y = sin (x) for training, and then use the test set to test the training function, that is, function approximation sin (x) curve
b
- BP算法函数逼近问题程序,是一段MATLAB程序代码,仅供参考-BP function approximation algorithm for the problem program, is a piece of MATLAB code, for reference
123
- 利用三层BP神经网络来完成非线性函数的逼近任务,其中隐层神经元个数为五个。-To complete the task of nonlinear function approximation by three layers of BP neural network, in which the number of hidden layer neurons into five.
net-work
- 基于BP和RBF的函数逼近编程及仿真,含仿真结果和分析比较-Approximation programming and simulation-based BP and RBF functions, including analysis of the simulation results and compare
rbf
- rbf网络非线性的研究,RBF作为隐单元的“基”构成隐含层空间,这样就可以将输入矢量直接(即不需要通过权连接)映射到隐空间。基于神经网络的非线性回归系统,就是应用神经网络能逼近任意非线性函数这一特性而设计的。用于非线性函数逼近的前向神经网络主要有两种:BP 网络和RBF 网络。基于BP 网络的非线性函数逼近虽然在理论上是可行的,-Research rbf network nonlinear
BPnet
- 采用BP神经网络的方法,通过大量样本训练来逼近某种非线性函数-functional approximation for nonlinear function using BP net
新建文件夹
- bp神经网络用于函数逼近,MATLAB源程序, 可运行实现(BP neural network for function approximation)
pso-bp
- 使用粒子群算法优化bp神经网络,完成函数逼近(Optimize bp neural network using particle swarm optimization algorithm to complete function approximation)
bp
- 利用BP神经网络算法,进行正弦函数逼近,参数可以根据需要自行调节(BP neural network algorithm, a sine function approximation, parameters can be adjusted according to their own)