搜索资源列表
package_emd
- 经验模态分解(EMD)算法是通过算法过程定义的,而并非由确定的理论公式定义的,所以对其进行准确的理论分析非常困难,我们目前只能借助大量的数字仿真试验不断对其性能进行深入的研究。 EMD算法的目的在于将性能不好的信号分解为一组性能较好的本征模函数(IMFIntrinsic Mode Function ),且IMF须满足以下两个性质: (1)信号的极值点(极大值或极小值)数目和过零点数目相等或最多相差一个; (2)由局部极大值构成的上包络线和由局部极小值构成的下包络线的平均值为零。(Empiri
emd加instfreq信号处理工具
- 经验模态分解,克服了小波分析的频率重叠效果不明显的问题。可以在欠定情况下进行信号分解。(Empirical mode decomposition, to overcome the wavelet analysis of the frequency overlap effect is not obvious problem. Signal decomposition can occur under undetermined conditions.)
G Rilling
- 这是一个使用EMD分解出IMF的例子,一个试验信号由一个tone信号,一个chirp信号,叠加得到,目的是使用EMD将这两个信号分离,得到的预期结果应该是chirp信号在高阶,tone信号在低阶,(原因是chirp信号在各个局部的频率都比tone信号高)。(This is an example of using EMD to decompose the IMF. A test signal consists of a tone signal and a chirp signal. The pur