搜索资源列表
sift-latest_win
- Rob Hess 開發的SIFT Feature Detector程式 These functions also work with image feature files from both David Lowe s SIFT detector and the Oxford VGG s affine covariant feature detectors. http://web.engr.oregonstate.edu/~hess/index.html
nonmaxsuppts
- 极大值抑制与双阈值门限得到图像边缘: * nonmaxsuppts.m Code for performing non-maxima suppression and thresholding of points generated by a feature/corner detector. It optionally returns sub-pixel feature locations.
nonmaxsuppts
- Non maxima suppression and thresholding for points generated by a feature or corner detector.
featuredetector
- Feature detector on visual c++ under windows
fastradial
- 特征检测,Loy and Zelinski s fast radial feature detector.-Loy and Zelinski s fast radial feature detector.
susure
- Speeded Up Surround Extrema Feature Detector and Descr iptor for Realtime Applications
siftpp-0.8.1.tar
- SIFT feature detector and descr iptor implementation based on original Lowe work
Corners
- 首先,请检查/样品在你的OpenCV的分布/ C/ squares.c的。这个例子提供了一个方形的检测,如何检测角落类似的功能,它应该是一个不错的开始。然后,一起来看看在OpenCV的功能,导向功能,如cvCornerHarris()和cvGoodFeaturesToTrack()。 上述方法可以返回许多角落类似的功能 - 最不会“真正的角落”你正在寻找。在我的应用程序,我只好检测,旋转或倾斜的广场(透视)。我的检测流水线包括: 从RGB转换为灰度级(cvCvtColor)
HOG-detector
- 提取HOG特征,可以根据需要进行行人检测,HOG是进行人心检测的不二之选。提供的工程可以直接编译运行。-HOG feature extraction can be carried out according to the needs of pedestrian detection, HOG is conducted to detect people s choice. Providing engineering can be directly compiled to run.
Harris_point_detector
- 角点检测,harris point detector是最基础也是最简单的角点检测方法,后续的角点检测都是以此为基础进行的改进。-feature descr iption
harris-laplace
- harris-laplace是基于DOG算法的改进,从不同尺度提取特征点,规避了不同尺度提取同一特征的缺陷。-feature detector
Hessian_point_detector
- hessian point detector 是SURF算法中所采用的基于Hessian矩阵进行的特征点检测方法,检测得到椭圆区域。-feature detector
Wops-Clicker
- One of my old projects. It s an undetected Auto-Clicker with basic features. Firstly, it has a mouse detector so you can set coordinates easily. Second of all, it has randomized (customizable) timings between mouse clicks and releases and also a dela
canny-edge
- this canny edge detector to capture the edge of the imge.it is a good feature descr iptor-this is canny edge detector to capture the edge of the imge.it is a good feature descr iptor
DropOut深度网络
- 深度神经网络在测试时面对如此大的网络是很难克服过拟合问题的。 Dropout能够很好地解决这个问题。通过阻止特征检测器的共同作用来提高神经网络的性能。这种方法的关键步骤在于训练时随机丢失网络的节点单元包括与之连接的网络权值。在训练的时候,Dropout方法可以使得网络变得更为简单紧凑。在测试阶段,通过Dropout训练得到的网络能够更准确地预测网络的输出。这种方式有效的减少了网络的过拟合问题,并且比其他正则化的方法有了更明显的提升。 本文通过一个简单的实验来比较使用Dropout方法前后网络