搜索资源列表
0098
- 1. 打开Matlab 编程环境; 2. 利用’imread’ 函数读入图像数据; 3. 利用’imshow’ 显示所读入的图像数据;-1. Open the Matlab programming environment 2. Use ' imread' function to read image data 3. Use of ' imshow' show to read the image data
0099
- 1. 打开Matlab 编程环境; 2. 利用’imread’ 函数读入图像数据; 3. 利用’imshow’ 显示所读入的图像数据;-1. Open the Matlab programming environment 2. Use ' imread' function to read image data 3. Use of ' imshow' show to read the image data
0100
- 1. 打开Matlab 编程环境; 2. 利用’imread’ 函数读入图像数据; 3. 利用’imshow’ 显示所读入的图像数据;-1. Open the Matlab programming environment 2. Use ' imread' function to read image data 3. Use of ' imshow' show to read the image data
0102
- 1. 打开Matlab 编程环境; 2. 利用’imread’ 函数读入图像数据; 3. 利用’imshow’ 显示所读入的图像数据;-1. Open the Matlab programming environment 2. Use ' imread' function to read image data 3. Use of ' imshow' show to read the image data
0103
- 1. 打开Matlab 编程环境; 2. 利用’imread’ 函数读入图像数据; 3. 利用’imshow’ 显示所读入的图像数据;-1. Open the Matlab programming environment 2. Use ' imread' function to read image data 3. Use of ' imshow' show to read the image data
ex15
- This example is showing you how to modify the contrast in color images using the Histogram Equalization block. Type this in command prompt: [X map] = imread( shadow.tif ) shadow = ind2rgb(X,map) -This example is showing you how to modify the c
4567
- 这是一个简单的LABVIEW程序,它完成二进制的读入或读出。-This is a simple program which can implete a arry imread from LabView or write into it.
xiaobobao
- ch3=softt(h3,thr1 clear clc I=imread( lena512.bmp ) imshow(I) I=double(I) II=I+30*randn(size(I)) figure imshow(II,[]) [a1,h1,v1,d1]=dwt2(II, sym8 ) [a2,h2,v2,d2]=dwt2(a1, sym8 ) [a3,h3,v3,d3]=dwt2(a2, sym8 ) sigma=
fenshuiling
- matlab分水岭算法图像分割 Image=imread( D:\Backup\我的文档\My Pictures\clip_image002.jpg ) -matlab watershed algorithm for image segmentation Image = imread (' D: \ Backup \ My Documents \ My Pictures \ clip_image002.jpg' )
gyhbit_dmap1
- 分组法求点方向图.若要求其他的指纹图像的点方向图,将“fp=imread( finger.tif ) 读入指纹图象”里的imread的参数修改成所需要的图像文件名。图像准备好后,在matlab中直接运行即可。-Packet Method pattern requires fingerprint image point pattern, fp = imread (' finger.tif to' ) reads the fingerprint image " the imre
tuxiang
- 1.利用工具(如ACDSee、PhotoShop)将*.jpg转换为*.bmp; 2.借助imread命令将图像内容读入内存数组; 3.通过访问数字图像RGB三个通道的对应矩阵,改变数字图像的色彩; 4.将数字图像的RGB表示转换为YUV表示; Y=0.30R+0.59G+0.11B U=0.70R-0.59G-0.11B V=-0.30R-0.59G+0.89B 5.通过访问Y(亮度)通道,改变数字图像的亮度; 6.通过Y(亮度)通道作灰度的线性变换,改变数字
imread
- opencv load image via qt
3x3-neighbor-pixel
- Descr iption All the filters have needed neighbor data the current pixel in the image,here this function(res_window=cover_window(how many neighbor value for row ,how many neighbor value for column ,input image) produce the result( res_window(r
lenaTest
- Opencv 图像读取示例,配置好opencv运行环境,使用VS2010+opencv249,-imread(image)mfc OpencvTest
1.2图像的矩特征
- 例程1.2-1 in_image=imread('qingdao.jpg'); inv_m7 = invariable_moment(in_image); 注:输入图像应为RGB图像;若要是输入的是灰度图像,应去掉image=rgb2gray(in_image); 例程1.2-2 img=imread('qingdao.jpg'); img=rgb2gray(img); [A_nm,zmlist,cidx,V_nm] = zernike(img); 注:输入图像应为灰度图
1.4图像的斑点检测
- 1.4-1 img=imread('sunflower.jpg'); imshow(img) pt=log_Blob(rgb2gray(img)); draw(img,pt,'LoG Lindeberg'); 1.5-1 img=imread('patrol.jpg'); imshow(img) pt=log_Blob(rgb2gray(img)); draw(img,pt,'Gilles');
1.5 角点特征检测
- 1.5-1 in_img=imread('long.jpg'); [posr,posc]=Harris1(in_img,0.04); 1.5-2 直接运行 1.5-3 img=imread('door.jpg'); points=harrislaplace(img); 1.5-4、1.5-5为1.5-3的子函数(1.5 1 In_img = imread (' long.jpg '); [posr, posc] = Harris1 (in_img, 0.04);
1.6 尺度不变特征提取
- im=imread('lena.bmp'); im=double(im); [ pos, scale, orient, desc ] = SIFT( im); 注意:要转换成double型(Im = imread (' Lena. BMP '); Im = double (im); [pos, scale, Orient, desc] = SIFT (im); Note: to convert to double)
内接圆识别与拟合matlab源代码
- 用法: I=imread('hand_contour.png'); [R cx cy]=max_inscribed_circle(I) 返回值为圆心坐标cx,cy,半径为R。(Usage: I = imread (' hand_contour. PNG '); [R cx cy]=max_inscribed_circle(I) The return value is center cx, cy, radius R)
新建文件夹 (2)
- 通过改变imread的图片,可以更改任意孔型进行菲涅尔衍射实验。(Fresnel diffraction experiment can be carried out by changing the image of imread.)