搜索资源列表
r43
- 鲁棒控制器设计,由于RBF网络可以实现任意逼近的非线性关系,它的目标是要做到误差平方和最小,与非线性PCA的目标一致,所以上述非线性PCA的模型可以通过采用两个RBF网络来实现非线性正变换 和反变换 。RBF网络是一个三层前馈网络,隐层采用径向基函数作为激励函数。第一个RBF网络把高维空间的数据映射到低维空间(如图4),第二个RBF网络将前面网络输出的低维空间数据再映射到高维空间,实现数据恢复(如图5)。这两个网络分别进行训练。-robust controller design, as RBF
wnn
- 小波神经网络程序,收敛性比BP神经网络好,可以避免局部最优,可用于分类,函数逼近等
Appendix_B
- 用于函数逼近的BP算法程序,可在Matlab中调试运行,绝对可行
基于支持向量机的手写数字识别(小论文+matlab编程及结果)
- 支持向量机的研究现已成为机器学习领域中的研究热点,其理论基础是Vapnik[3]等提出的统计学习理论。统计学习理论采用结构风险最小化准则,在最小化样本点误差的同时,缩小模型泛化误差的上界,即最小化模型的结构风险,从而提高了模型的泛化能力,这一优点在小样本学习中更为突出。SVM理论正是在这一基础上发展而来的,经过十几年的研究和发展,已开始逐步应用于一些领域。在解决小样本、非线性及高维模式识别问题中表现出许多特有的优势,已经在模式识别、函数逼近和概率密度估计等方面取得了良好的效果。
approximationmethod
- 该程序基于VB语言实现函数逼近法求极点,结果保存在access数据库中-The program based on VB language function approximation method , the results are saved in access databases