搜索资源列表
GUI_PR_SVM
- 具有图形操作界面的支持向量机多类分类实验系统.全部用Matlab实现,可以实现多种分类识别. 这是本人的毕业设计的附属程序-graphical interface with support vector machines more experimental classification system. All using Matlab, could achieve multiple classification. This is my graduation design procedures f
Multi-ClassSVM
- 提出了一种基于支持向量机的多类模拟调制方式识别算法。该算法通过分析模拟调制信号的特点,提取有效的特征向量以区分不同的调制方式,并基于支持向量机和判决树分类思想,将特征向量映射到高维空间中加以分类。
support_vector_machine
- C针对模式识别问题H描述了支持向量机的基本思想H着重讨论了OD=?PI最小二乘=?PI加权=?P 和直接 =?P 等新的支持向量机方法H用于降低训练时间和减少计算复杂性的海量样本数据训练算法分块法I分解法H提 高泛化能力的模型选择方法H以及逐一鉴别法I一一区分法IPD., 分类法I一次性求解等多类别分类方法@最后给 出了污水生化处理过程运行状态监控的多类别分类实例@作为结构风险最小化准则的具体实现H支持向量机具有 全局最优性和较好的泛化能力