搜索资源列表
园排列问题
- 分支限界法解圆排列问题,是一个算法设计与分析课程的作业-branch and bound method for solving problems with a round of one algorithm design and analysis of the operational programs
优先队列式分支限界法园排列问题
- 优先队列式分支限界法园排列问题,是一个作业,算法设计与分析-priority queue-branch and bound with France Park, is an operation, algorithm design and analysis
贪心算法球园排列问题
- 贪心算法球园排列问题,算法设计与分析课程的作业。-greedy algorithm with the ball park, algorithm design and analysis programs work.
随机化算法解圆排列问题
- 随机化算法解圆排列问题,算法设计与分析,课程作业-randomized algorithm Xie Yuan with the problem, algorithm design and analysis, course work
回溯法搜索排列树算法园排列问题
- 回溯法搜索排列树算法园排列问题,算法设计与分析课程,作业题-search with backtracking algorithms park with trees, algorithm design and analysis courses, and that operations
algrithm
- 算法设计与分析的经典程序,主要有0-1背包问题,最小生成树等。-algorithm design and analysis of the classic procedure, mainly 0-1 knapsack problem, such as minimum spanning tree.
chesscover
- 此程序是关于算法设计与分析中的棋盘覆盖问题,采用分治策略实现的。-on algorithm design and analysis covering the chessboard, using the divide and conquer strategy to achieve.
0404
- 算法分析与设计 之 贪心算法PPT1(以后将会续传其他)-algorithm analysis and design from the greedy algorithm PPT1 (beyond Continuingly other)
yakun
- 归并排序,算法分析与设计第二章分治法思想的归并排序算法实现,用C++写的.-merge sorting algorithm analysis and design of the second chapter ideological divide-and-conquer method of merging ranking algorithm, C writes.
kuaisu
- 快速排序,算法分析与设计第二章分治法思想的快速排序算法实现.-quick sort, algorithm analysis and design of the second chapter ideological divide-and-conquer method of quick sort algorithm.
algorithm_design_and_analysis
- 算法设计与分析的ppt课件,供大家参考。-algorithm design and analysis ppt courseware for your reference.
MatrixChain
- 《算法分析与设计》中的 “矩阵连乘程序”给定n个矩阵{A1,A2,…,An},其中Ai与Ai+1是可乘的,i=1,2 ,…,n-1。由于矩阵满足乘法的结合律,根据加括号的如何确定计算矩阵连乘积的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。
suanfa
- 算法设计与分析课用的着,是做实验用的,已经运行过
tanxin
- tanxin.rar 基本算法的设计与分析试题解答
shuzu
- shuzu.rar 基本算法的设计与分析试题解答
kruskal
- 算法设计与分析kruskal算法实现,基于随机产生的连通无向图
prim
- 算法分析与设计,基于随机生成的无向图的prim算法实现
0-1
- 算法设计与分析:动态规划解决0-1背包问题
E10514043
- 应用算法设计与分析知识,查找出最长公共子序列问题
1[1].1merge
- 算法分析与设计实验代码,归并排序实现从小到大排序