搜索资源列表
共轭梯度法
- 上述算法的④输出结果要求包含最优解、最优值、迭代次数,以及每次迭代的中间结果(对 而言)终止准则为H终止准则-above algorithm output requirements include optimal solution, the optimal values, the number of iteration, and each iteration of the intermediate results (in terms of) the termination criteria f
gongetidu
- 无约束条件下的共轭梯度法的最优化程序设计-Not constrained conjugate gradient method to optimize programming
Nonlinear-equation-solve
- 非线性方程,方程组求解,利用求非线性方程实根的对分法和求非线性方程组一组实根的梯度法-Nonlinear equation solve
tidufa
- 共轭梯度法,用于机械优化设计中的无约束优化方法的求法,基于二元函数。-Conjugate gradient method, the optimum design of the machine used for unconstrained optimization method the method, based on binary function.
youhuachengxu
- 运用共轭梯度法和复合型法求函数的最小值,可以优化用-Can be optimized with the use of the conjugate gradient method and Method composite function of the minimum
SmoothAndSharpen
- 图像平滑与锐化,包括邻域平均法、中值滤波法平滑,梯度掩模、拉氏算子锐化-Image smoothing and sharpening, including neighborhood average, median filtering method smooth gradient mask, Laplace operator sharpening
数值菜单
- 里面很多有用的数学工具 如LU分解 快速傅里叶变换 梯度法等
Powell
- 鲍威尔方法是鲍威尔于1964年提出的,以后又经过他本人的改进。该方法是一种有效的共轭梯度方向法,它可以在有限步内找到二次函数的极小点。对于非二次函数只要具有连续的二阶导数,用这种方法也是有效的。-Powell method is proposed in 1964, and later through his own improvements. This method is an effective method of conjugate gradient direction, it can fi
tidu
- 共轭梯度法(Conjugate Gradient)是介于最速下降法与牛顿法之间的一个方法,它仅需利用一阶导数信息,但克服了最速下降法收敛慢的缺点,又避免了牛顿法需要存储和计算Hesse矩阵并求逆的缺点,共轭梯度法不仅是解决大型线性方程组最有用的方法之一,也是解大型非线性最优化最有效的算法之一。-Conjugate Gradient Method (Conjugate Gradient) is between the steepest descent method between a law an
Conjugate-Gradient-Method-source
- 共轭梯度法源程序,可以再vc++下进行运行-Conjugate Gradient Method source