搜索资源列表
dss-id3
- 一个基于ID3方法的具体实例,其中的ID3use包括一个完整的建立决策树的模型。-ID3 method based on a specific examples, the ID3use including the establishment of a complete decision tree model.
jueceshu
- 决策树学习的通用程序。可以根据自己的具体要求扩充功能-Decision Tree Learning common procedures. According to the specific requirements of their functional expansion
DecisionTree-in-cSharp
- C sharp描述的决策树代码,α-β剪枝算法等,希望能有帮助。-C sharp code described in the decision tree, α-β pruning algorithm, hoping to help.
ID3-CSharp
- This my implementation of ID3 algorithm. The algorithm ID3 (Quinlan) uses the method top-down induction of decision trees. Given a set of classified examples a decision tree is induced, biased by the information gain measure, which heuristically lead
43243
- vc小程序 手写数字识别系统 大家凑合着看吧 仅供参考 程序完整-The decision tree program of the exam program is only for reference program complete look at themselves
Class1
- 决策树分析,可以作为大学大二大三的课程实验,也可做初学者的学习之用-Decision tree analysis can be used as a college sophomore junior course experiment, but also to do the beginners learning
id3
- 数据挖掘分类规则中的决策树算法中的ID3算法,对于理解数据挖掘有一定的帮助。-Data mining classification rules in the decision tree algorithm ID3 algorithm, is certainly helpful for understanding data mining.
C4.5
- 决策树算法_C实现,主要是数据挖掘领域。-_C Decision tree algorithm to achieve
tree
- 用数据结构的判定树实现一些简单的模拟功能。-The decision tree data structure to achieve some simple analog functions.
C4.5
- C4.5 算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法. C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进: 1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足; 2) 在树构造过程中进行剪枝; 3) 能够完成对连续属性的离散化处理; 4) 能够对不完整数据进行处理。 C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描
cadds(7thJuly2010)
- code sources decision tr-code sources decision tree
decision-tree-classifier
- 这些代码可用于构建决策树分类器,之后通过该代码可将收集到的数据以决策树的形式表示出来,- U8FD9 u4E3B u4E3 u7E1 u7E1 u7E1 u7E1 u53EF u53EF u5C06 u5E0 U6536 u96C6 u5230 u7684 u6570 u636E u4EE5 u51B3 u7B56 u6811 u7684 u5F62 u5F0F u8868 u793A u51FA u6765 uFF0C
ID3-decision-tree
- 可以利用这些代码构建决策树分类器,将其用于用户数据的分类- U53EF u5E2 u5229 u5289 u5206 u5E09 u7R09 U7684 u5206 u7C7B