搜索资源列表
cwt2d
- 基于Morlet的二维连续小波变换源程序。-Morlet-based two-dimensional continuous wavelet transform source.
wavelet-transform
- 小波变换用来对图像进行小波变换分解。 将二维矩阵转换成一个列向量,然后对该列向量进行一次一维小波变换。-wavelet transform
yawtb
- 二维连续小波变换,以及高维连续小波变化,简单易懂-Mainly includes two dimensional continuous wavelet transform and higher dimensional continuous wavelet transform and its application!!
denoise
- 给定一个二维信号,利用小波变换对信号进行去噪处理。-Given a two-dimensional signal, the program denoise using wavelet transform.
wavelettransform
- 利用小波变换进行奇异点检测、图像去噪,包括一维、二维程序-wavelet transform
gingfei
- 用平面波展开法计算二维声子晶体带隙,关于非线性离散系统辨识,Gabor小波变换与PCA的人脸识别代码。- Computation Method D phononic bandgap plane wave, Nonlinear discrete system identification, Gabor wavelet transform and PCA face recognition code.
keifui_v74
- 用平面波展开法计算二维声子晶体带隙,重要参数的提取,基于小波变换的数字水印算法matlab代码。- Computation Method D phononic bandgap plane wave, Extract important parameters, Based on wavelet transform digital watermarking algorithm matlab code.
fanting
- 最小均方误差等算法的MSE的计算,用平面波展开法计算二维声子晶体带隙,Gabor小波变换与PCA的人脸识别代码。- Minimum mean square error MSE calculation algorithm, Computation Method D phononic bandgap plane wave, Gabor wavelet transform and PCA face recognition code.
FWT_DB
- 此示意程序用DWT实现二维小波变换,二维信号可以是实测二维数据,也可以是图像(需转换为二维数据)-This schematic procedure DWT is used to implement the two-dimensional wavelet transform, the two-dimensional signal can be measured in 2 d data, can also be a image (need) is converted into a 2 d data
hbgyy
- 利用自然梯度算法,Gabor小波变换与PCA的人脸识别代码,可实现对二维数据的聚类。- Use of natural gradient algorithm, Gabor wavelet transform and PCA face recognition code, Can realize the two-dimensional data clustering.
xiaobo2
- 一个基于二维小波变换的边缘检测(Edge detection based on two dimensional wavelet transform)
DDXBXM
- 小波变换程序,二维小波变换和一维小波变换源程序,()
MATLAB二维小波变换
- matlab实现二维小波变换,需把文件名改为英文(MATLAB realizes 2-D wavelet transform and needs to change the file name to English.)
二维小波分解 (1)
- 小波变换,对图像二维信号进行3层小波分解。 本题二维图像采用MATLAB自带的图片,实现图片多层小波分解的函数是: [C,S]=wavedec2(X,N,’wname’) , 即使用给定小波‘wname’对二维信号X进行N层小波分解。本题使用’bior3.7’小波进行分析。(wavelet transform)