搜索资源列表
mm
- 感知器算法实验 w1 w2 分类 早期“人工神经网络”模型-Perceptron classification algorithm w1 w2 early experimental
pattern
- 模式识别里面的感知器算法,对地物分类,利用判别向量,实现判别函数-pattern recognition sensing class things
bp1
- 利用BP算法,设计一个多层感知器为表中的数据集提供一个非线性逼近,并测试其泛化能力。-BP algorithm is used to design a multi-sensor data sets for the table to provide a non-linear approximation, and to test its generalization ability.
ganzhiqi
- 用感知器分类算法分离三类样本,每个分类面都将一类与其他所有的类分开-Classification algorithm with the separation of three types of sensor samples,Each category will face a class with all the other classes separately
ganzhiqi
- 感知器算法,用于感知器的计算,感知器指的是进行分类的线性判别函数,他们不需要考虑模式及的统计性质。-ganzhiqi duanfa
moshishibie
- C# 模式识别作业 最大最小距离算法(可以实现鼠标收入) 感知器-C# pattern recognition operating the largest minimum distance the algorithm (mouse income) sensor
12
- 关于人工神经网络中感知器的matlab算法-The matlab algorithm is on artificial neural network sensor
ganzhiqi
- 测试智能信息处理课程实验,感知器算法,用matlab实现,-Experimental tests of intelligent information processing course,Perceptron algorithm, matlab
PA
- 感知器算法的完整程序,包括程序解释,最后效果不错,误差小,鲁棒性好。-Perception complete program machine algorithms, including data generated, the corresponding code interpreter
ganzhiqi
- 模式识别中的感知器算法,可绘制两个类别点的判决直线-In pattern recognition, the perceptron algorithm can draw a straight line of two categories
perceptron-algorithm-
- 通过感知器算法分类鸢尾花(三类分类),由于感知器算法是二类分类器,所以三类分类需要两两对比。-Classification of iris by perceptron algorithm (three classifications)Since the perceptron algorithm is a class 2 classifier, three classifications require a pairwise comparison.
code
- MATLAB神经网络原理与实例精解中第4章 单层感知器的算法-MATLAB neural network theory and examples of the fourth chapter in the single-layer perceptron algorithm
libsvm-3.1-[FarutoUltimate3.1Mcode]
- 态势要素获取作为整个网络安全态势感知的基础,其质量的好坏将直接影响态势感知系统的性能。针对态势要素不易获取问题,提出了一种基于增强型概率神经网络的层次化框架态势要素获取方法。在该层次化获取框架中,利用主成分分析(PCA)对训练样本属性进行约简并对特殊属性编码融合处理,将其结果用于优化概率神经网络(PNN)结构,降低系统复杂度。以PNN作为基分类器,基分类器通过反复迭代、权重更替,然后加权融合处理形成最终的强多分类器。实验结果表明,该方案是有效的态势要素获取方法并且精确度达到95.53%,明显优于
感知器算法Matlab源码
- 感知器算法Matlab源码。用于解决感知器分类的问题(Perceptron algorithm Matlab source code)
HK
- HK算法思想很朴实,就是在最小均方误差准则下求得权矢量. 他相对于感知器算法的优点在于,他适用于线性可分和非线性可分得情况,对于线性可分的情况,给出最优权矢量,对于非线性可分得情况,能够判别出来,以退出迭代过程.(The idea of HK algorithm is very simple, which is to obtain the weight vector under the minimum mean square error criterion. Compared with th