搜索资源列表
logRegres
- 机器学习实战中的逻辑回归代码以及测试数据-Logistic regression in machine learning field code and test data
Ch02
- 机器学习实战【美】第二版,第二章实例源代码-Machine Learning inAction Peter Harrington second chapter examples
Ch04
- 机器学习实战 第四章实例代码 美国 Machine Learning in Action 4 Charpter instance-Machine Learning in Action 4 Charpter instance
Ch06
- 机器学习实战 第六章 Machine Learning in Action Charpter6 instance-Machine Learning in Action Charpter6 instance
Ch07
- 机器学习实战 第7章实例代码 Machine Learning in Action Charpter7 instance-Machine Learning in Action Charpter7 instance
kNN_in_Python
- 用Python学习和实战kNN算法,对《机器学习实战》中的代码进行修正,保证能在python3.x中运行-kNN algorithm in learning and action in Python
logRegres
- 《机器学习实战》中logistic回归 其中分类器训练采用的最优化算法为梯度上升法以及改进的随机梯度上升法。-logistic regression
Tree
- 《机器学习实战》决策树部分源码与数据部分,仅供参考,确认有效- Machine learning with the data source tree section
机器学习实战及配套代码
- the code of Machine learning and actual combat
myBayes
- 这个是本人自己写的朴素贝叶斯算法,参考书籍为《机器学习实战》。(This is my own written naive Bayesian algorithm, reference books for the "machine learning combat.")
machinelearninginaction
- 机器学习实战的所有Python源码与数据集,可以直接运行(The datasets and source codes of Machine Learning in Action)
机器学习实战
- 机器学习入门级书籍,讲述浅显易懂,附带源代码与各种数据样本,Python建议使用2.7版。(Machine Learning&Python)
机器学习实战
- 机器学习实战,想用Python实现经典机器学习算法的可以好好看看(Machine learning practice using python)
science_competion_net
- 不错的机器学习实战案例,可以直接运行出结果。(Good machine learning actual cases, you can directly run the results.)
kMeans
- K-means 的python实现,源码,机器学习实战的第10章(Python implementation of K-means)
apriori
- apriori的python实现,源码,机器学习实战的第11章(Python implementation of apriori)
Ch02
- 来自《机器学习实战》,本代码为数字识别及网站约会预测(From "machine learning", this code is digital recognition and website dating prediction)
机器学习
- 此算法是对机器学习实战这本书中的K近邻算法进行了代码的详细介绍(K neighbor algorithm of machine learning code explained in detail)
机器学习实战
- 讲解机器学习,用个大案例进行学习分心,包括代码编写,训练,模型建立,模型使用方法(Explain machine learning, use a large case for learning distractions, including code writing, training, model building, and model use)
机器学习实战
- 一本关于机器学习的资料书,我使用这本书学习的,很不错,推荐给大家(A book about machine learning, I use this book to learn well, I recommend it to you.)