搜索资源列表
nonmaxsuppts
- Non maxima suppression and thresholding for points generated by a feature or corner detector.
siftpp-0.8.1.tar
- SIFT feature detector and descr iptor implementation based on original Lowe work
Corners
- 首先,请检查/样品在你的OpenCV的分布/ C/ squares.c的。这个例子提供了一个方形的检测,如何检测角落类似的功能,它应该是一个不错的开始。然后,一起来看看在OpenCV的功能,导向功能,如cvCornerHarris()和cvGoodFeaturesToTrack()。 上述方法可以返回许多角落类似的功能 - 最不会“真正的角落”你正在寻找。在我的应用程序,我只好检测,旋转或倾斜的广场(透视)。我的检测流水线包括: 从RGB转换为灰度级(cvCvtColor)
Wops-Clicker
- One of my old projects. It s an undetected Auto-Clicker with basic features. Firstly, it has a mouse detector so you can set coordinates easily. Second of all, it has randomized (customizable) timings between mouse clicks and releases and also a dela
canny-edge
- this canny edge detector to capture the edge of the imge.it is a good feature descr iptor-this is canny edge detector to capture the edge of the imge.it is a good feature descr iptor
DropOut深度网络
- 深度神经网络在测试时面对如此大的网络是很难克服过拟合问题的。 Dropout能够很好地解决这个问题。通过阻止特征检测器的共同作用来提高神经网络的性能。这种方法的关键步骤在于训练时随机丢失网络的节点单元包括与之连接的网络权值。在训练的时候,Dropout方法可以使得网络变得更为简单紧凑。在测试阶段,通过Dropout训练得到的网络能够更准确地预测网络的输出。这种方式有效的减少了网络的过拟合问题,并且比其他正则化的方法有了更明显的提升。 本文通过一个简单的实验来比较使用Dropout方法前后网络