搜索资源列表
svm_perf.tar.gz
- SVMstruct is a Support Vector Machine (SVM) algorithm for predicting multivariate or structured outputs. It performs supervised learning by approximating a mapping h: X --> Y using labeled training examples (x1,y1), ..., (xn,yn). Unlike regula
heguji
- 非参数统计学中非参数回归的简单应用核回归程序,应用范围广泛,不需要知道样本的分布就可以使用该方法。-Non-parametric statistical regression Nonparametric kernel regression of the simple application procedure, a wide range of applications, does not need to know the distribution of the samples you can u
svm_perf
- SVMstruct is a Support Vector Machine (SVM) algorithm for predicting multivariate or structured outputs. It performs supervised learning by approximating a mapping h: X --> Y using labeled training examples (x1,y1), ..., (xn,yn). Unlike reg
processing
- 基于结构张量的核回归非均匀插值算法及其在图像处理中的应用-Structure tensor based on non-uniform interpolation kernel regression algorithm and its application in image processing
matlab-nonparamatric
- 两种非参数估计方法 核估计 局部线性估计-kernel smoothing local constant regression
lwppredict
- LWP是一种Matlab / Octave工具箱实现局部加权多项式回归(也被称为局部回归/局部加权散点平滑/黄土/ LOWESS和核平滑)。使用此工具箱,您可以使用九个具有度量窗口宽度或最近邻窗口宽度的任意一个内核来拟合任意维度的数据的局部多项式。还提供了一个优化内核带宽的函数。优化可采用留一交叉验证,GCV,AICC、AIC,FPE,T,执行,或单独的验证数据。鲁棒拟合也可用。(LWP is a Matlab/Octave toolbox implementing Locally Weight
lwpparams
- LWP是一种Matlab / Octave工具箱实现局部加权多项式回归(也被称为局部回归/局部加权散点平滑/黄土/ LOWESS和核平滑)。使用此工具箱,您可以使用九个具有度量窗口宽度或最近邻窗口宽度的任意一个内核来拟合任意维度的数据的局部多项式。还提供了一个优化内核带宽的函数。(LWP is a Matlab/Octave toolbox implementing Locally Weighted Polynomial regression (also known as Local Regre
lwpeval
- LWP是一种Matlab / Octave工具箱实现局部加权多项式回归(也被称为局部回归/局部加权散点平滑/黄土/ LOWESS和核平滑)。(LWP is a Matlab/Octave toolbox implementing Locally Weighted Polynomial regression (also known as Local Regression / Locally Weighted Scatterplot Smoothing / LOESS / LOWESS and Ke
GPflow_example.py
- 利用GPflow进行高斯过程回归,kernel有OU过程核等(Gauss Process Regression Using GPflow)
Kernel-Sliced-Inverse-Regression-master
- 核切片逆回归用于高维问题的维度缩减,属于数据驱动方法(Rough matlab code for kernel sliced inverse regression)