搜索资源列表
GS_CH_MOPSO_Grey
- 多目标非线性约束的粒子群算法,采用灰度理论,混沌理论,动态惩罚函数,可针对任何复杂函数进行优化,效果很好-Nonlinear constrained multi-objective particle swarm algorithm, using gray theory, chaos theory, dynamic penalty function can be optimized for any complex function, the effect is very good
ML-KELM1.0
- 多核极限学习器,是一种前馈神经网络,能逼近任意连续目标函数或分类任务重的任何复杂决策边界(Multi-kernel limit learner is a feedforward neural network, which can approach any complex decision boundary of any continuous objective function or classification task)