搜索资源列表
optimizebackpack
- 背包问题c算法实现,利用回溯法实现的背包问题详解,内附源代码即详细注解,以及一些优化的思想,很容易理解,是一个很好的算法,通过调试,可以运行。-knapsack problem c algorithm, using the retrospective method to achieve Hi knapsack problem, the source code that contains detailed notes, and some optimization thinking, it is e
017387-01
- 论坛代码 用分支界限法解决的几个问题:包括0-1背包问题,最大团问题,电路布线问题,最大装载问题.作业最优处理问韪-Forum with the branch code boundaries to solve several problems : including 0-1 knapsack problem, the largest group, circuit wiring problem, the greatest problem loading. Optimal operating han
linux4
- linux下的MPI的C语言程序,包括背包问题的源代码和结果-MPI under linux C-language program, including the knapsack problem of the source code and results
bag
- 分支限界法解决0/1背包问题,用c++的优先队列方法-Branch and bound method to solve 0/1 knapsack problem, using c++ Priority queue method
beibao
- 贪心法求解背包问题,希望对大家有帮助,还 的的的 -Knapsack problem greedy method, we would like to help, but also of the
knapsack
- it a code for knapsack
tspmatlab
- 提出一种改进的禁忌搜索算法来求解背包问题。该算法基于禁忌搜索技术,并采用I&D策略,同时设计了两种针对局 部最优解的变异算子。改进后的算法能有效地弥补标准禁忌算法对初始解依赖的缺陷,同时也避免了搜索停滞的现象。通过对具 体实例和随机问题的测试,表明改进后的禁忌搜索算法有更好的性能。 关-An improved tabu search algorithm to solve knapsack problem. The algorithm is based on tabu
5sourcecodes
- o-1 knapsack parallel implementaion in c, Begining socket pro in c.zip, rsa using crt in c, des in java, fuzzy string matching in c-o-1 knapsack parallel implementaion in c, Begining socket pro in c.zip, rsa using crt in c, des in java,
gpk-update-icon.txt.tar
- 实现背包问题的最优解,linux下编程,不会让你失望的-Knapsack problem to achieve the optimal solution, linux under the program will not let you down
KnapsackPK
- Packing Generalized Knapsack (greedy algorithm) in polynomial time
01beibao
- 使用VC编程工具,C语言实现动态规划算法解决01背包问题-Using the VC programming tool, C language implementation 01 knapsack problem solving dynamic programming algorithm
MerkleHellman
- The encryption algorithm using Merkle-Hellman knapsacks starts with a binary message. * The message is envisioned as a binary sequence P = [p1, p2, … ,pk]. * Divide the message into blocks of m bits, Po = [P1, P2, ... ,Pm], P1 = [Pm+1, .
packet
- 背包问题(Knapsack problem)是一种组合优化的NP完全问题-used the c++ for parket problem
