搜索资源列表
RSA解密和加密算法的实现和应用
- RSA算法 :首先, 找出三个数, p, q, r, 其中 p, q 是两个相异的质数, r 是与 (p-1)(q-1) 互质的数...... p, q, r 这三个数便是 person_key,接著, 找出 m, 使得 r^m == 1 mod (p-1)(q-1)..... 这个 m 一定存在, 因为 r 与 (p-1)(q-1) 互质, 用辗转相除法就可以得到了..... 再来, 计算 n = pq....... m, n 这两个数便是 public_key ,编码过程是, 若资料为 a,
RsaTool.自己写的RSA算法工具
- 自己写的RSA算法工具。支持RSA密钥产生(包括CRT)、RSA运算、强素数生成、大数运算等功能。用了的都说好。,Writing their own tools of the RSA algorithm. Support for RSA Key Generation [including CRT], RSA computation, strong prime number generation, large numbers computing functions. Use of that goo
prime
- prime value found in this c code
rsa
- rsa 的C语言实现 实现加密解密和素数生成功能-rsa the C language to achieve the realization of encryption and decryption and the prime number generation function
1024RSA
- 支持大整数的RSA算法,还可以自动生成随机大素数-Support for large integer RSA algorithm, can also automatically generate random large prime numbers
bigint
- 大素数生成。用于加密解密。具体内容:用C或C++语言编写的一个生成二进制为1024位的大素数的程序。-Generate large prime numbers. For encryption and decryption. Specific elements: using C or C++ Language to prepare a generation of binary for the 1024 program of large prime numbers.
RSA
- RSA公钥加密的基本实现 bmp灰度图片加解密操作包括 RSA 的加减密算法; 素数检测算法;RSA 密钥生成算法; 应用该 RSA 密码体制加、解密; BMP 灰度图的算法; Pollard p-1 算法 ; Pollard r 算法 ; -RSA public key encryption to achieve the basic gray-scale picture bmp including RSA encryption and decryption operations of addi
ECC
- C语言,大素数域上的椭圆曲线加密解密算法-C language, the domain of large prime numbers on the elliptic curve encryption and decryption algorithm
getPrime
- 素数Robin—Millor测试法的C语言源码-Robin-Millor prime test of the C language source
PRIME
- 在密码学中判断一个数是否为素数很重要 该算法判断一个数是否为素数 c语言实现-Cryptography judged in a number of prime numbers is very important for the algorithm to determine whether a number of prime numbers c language
BigPrime
- 本程序是用C语言编写的RSA大素数密码生成体制-It is a program for 啊large prime number of RSA
rsa-cpp
- RSA公钥加密算法是1977年由Ron Rivest、Adi Shamirh和LenAdleman在(美国麻省理工学院)开发的。RSA取名来自开发他们三者的名字。RSA是目前最有影响力的公钥加密算法,它能够抵抗到目前为止已知的所有密码攻击,已被ISO推荐为公钥数据加密标准。RSA算法基于一个十分简单的数论事实:将两个大素数相乘十分容易,但那时想要对其乘积进行因式分解却极其困难,因此可以将乘积公开作为加密密钥。 -Public key encryption algorithm RSA in 1
Programto-generaterandomnumbers
- 产生随机数的C++程序,可以生成大素数,解决了rsa算法的随机数产生问题-Generate random numbers in C++ program that can generate large prime numbers rsa algorithm to solve the problem of the random number generator
dfsd
- C语言,大素数域上的椭圆曲线加密解密算法 [ibe_dec.rar] - 椭圆曲线加密算法,解密一步的源代码,有详细注释 [DES.rar] - 各种加密算法的源代码,包括DES,RSA,DAS,RC4,RC5等 [mulf2m.rar] - 椭圆曲线加密算法中的乘法器的生成,主要功能是实现在素域上的多项式模P(大素数)乘的运算。 [AesCode.rar] - AES c++实现 有图形界面对话框 简单易用 [2745ecc.rar] - 椭圆曲线加密算法
RSA
- 一个RSA算法的实现, 其中有大整数简单实现, 和求大质数的算法,最后综合成RSA加密解密算法。 代码有一定注释,输出详细的中间过程,对C++初学者很有用。-Simple implementation of an RSA algorithm, where there is a large integer, and demand a large prime number algorithm, finally consolidated into the RSA encryption al
NEWJ
- 我用C++写的分解质因数算法和排队报数算法。其中排队问题为:若干人站成一个首尾相连的环,从第一个人开始从1到3报数,每次数到3的人站出来,问最后剩下的那个人是原先的第几个人。-I with C++ write the prime factorization algorithm and the number of queued message algorithm. Queuing problem: a number of people standing in a ring of end-to-en
primenumber.c
- Prime number program. Written in C
prime2.c
- Prime number program. Edit v2. Written in C
New-folder-(4)
- We begin with choosing two random large distinct primes p and q. We also pick e, a random integer that is relatively prime to (p-1)*(q-1). The random integer e is the encryption exponent. Let n = p*q. Using Euclid s greatest common divisor a
rsac++
- A user of RSA creates and then publishes a public key based on two large prime numbers, along with an auxiliary value.