搜索资源列表
ligl-fft
- 基于tms320vc55*系列DSP常用算法,包括: 1. Experiment 7A - Radix-2 Complex FFT in C 2. Experiment 7B - Radix-2 Complex FFT in C55x Assembly Language 3. Experiment 7C - Radix-2 Complex FFT and IFFT 4. Experiment 7C - Fast Convolution 5. matla
20060510205455473
- vhdl设计事例,有助于FPGA初学着,High-Performance 1024-Point Complex FFT-vhdl design examples, to help novice FPGA. High-Performance 1024-Point Complex FFT
fft
- 快速傅立叶变换(FFT)的FPGA实现,本系统采用了不同点数基2的复FFT。-Fast Fourier Transform (FFT) of the FPGA, the system uses two different points-based complex FFT.
16Point-FFT
- 16点FFT VHDL源程序,The xFFT16 fast Fourier transform (FFT) Core computes a 16-point complex FFT. The input data is a vector of 16 complex values represented as 16-bit 2’s complement numbers – 16-bits for each of the real and imaginary component of a
FFT_fixedPoint_console
- 定点复数FFT算法 C语言实现 支持点数为128,256,512,1024,2048可配置 同时附带文档-Fixed-point complex FFT algorithm for C language support 128,256,512,1024,2048 points can be configured at the same time as the document attached
fft
- 该程序是应用在DSP上的傅里叶变换。它是对复序列的数组进行傅里叶变换后,输出相应的频谱数组。-The procedure is used in the Fourier transform DSP. It is a complex sequence of Fourier transform to the array, the output spectrum corresponding array.
ADSP-21062_Compl_FFT_rad-4
- 用ADSP21062实现快速FFT基4算法 压缩包内有源代码和说明-In general, a radix-4 FFT will run faster than radix-2 FFT but will take up more space and has more restrictions on the length of the FFT. Specifically, all radix-2 FFT routines will take data lengths that are
simple_app
- TMS320c672x通过DSPLIB库实现复数FFT,并可实现两个实数数列的高效FFT。-TMS320c672x achieved through DSPLIB library complex FFT, and can realize two real sequences efficient FFT.
lunwen
- 潘明海 刘英哲 于维双 (论文) 中文摘要: 本文讨论了一种可在FPGA上实现的FFT结构。该结构采用基于流水线结构和快速并行乘法器的蝶形处理器。乘法器采用改进的Booth算法,简化了部分积符号扩展,使用Wallace树结构和4-2压缩器对部分积归约。以8点复点FFT为实例设计相应的控制电路。使用VHDL语言完成设计,并综合到FPGA中。从综合的结果看该结构可在XC4025E-2上以52MHz的时钟高速运行。在此基础上易于扩展为大点数FFT运算结构。 -Pan Mingha
FFT
- 2点的碟形算法,其中包含了旋转因子乘法器,这是一种高效的复数乘法器.-2point dish method, which includes the rotation factor multiplier, which is a highly efficient complex multipliers.
FFt
- 基2FFT蝶形运算器,代码有仿真用数据。主代码用于仿真,碟形运算和复数乘法元件化-Based 2FFT butterfly, code with simulation data used. Master code for simulation, dish components of computing and complex multiplication
fft
- 实现复数的FFT变换及IFFT变换 在处理器或者WIN32下均可实现-Implementation of the FFT transform and complex IFFT transform processor or may be achieved under WIN32
F2812-FFT
- FFT 并不是一种新的变换,它是离散傅立叶变换(DFT)的一种快速算法。由于我们在计算DFT 时一次复数乘法需用四次实数乘法和二次实数加法;一次复数加法则需二次实数加 法。每运算一个X(k)需要4N 次复数乘法及2N+2(N-1)=2(2N-1)次实数加法。所以 整个DFT 运算总共需要4N^2 次实数乘法和N*2(2N-1)=2N(2N-1)次实数加法。如此一来,计算时乘法次数和加法次数都是和N^2 成正比的,当N 很大时,运算量是可观的,因而需要 改进对DFT 的算法减少运算速度
Fast_Fouri198558462006
- FFT GUI The FFT is a complicated algorithm, and its details are usually left to those that specialize in such things. This section describes the general operation of the FFT, but skirts a key issue: the use of complex numbers. If you have a backgr
FFT
- 基于TMS320C54x的FFT实现,从而掌握掌握8~1024点复数 C54x FFT程序的使用方法-TMS320C54x the FFT-based implementation to grasp the master 8 1024 point complex ' C54x FFT program to use
FPGA--SIGNAL-FFT-FIR
- 目前,在极高频率的电子装置或系统中不能采用数字信号处理的原因有两个:一是A/D转换器的速度不能达到足够快 二是信号处理任务太复杂,达不到实时处理的要求.-At present, in the high frequency of the electronic device or system cannot use the digital signal processing for two reasons: one is the A/D converter cannot reach the spee
Lab0503-FFT
- 用dsp实现快速傅立叶变换(FFT)算法,FFT 并不是一种新的变换,它是离散傅立叶变换(DFT)的一种快速算法。由于我们在计 算DFT 时一次复数乘法需用四次实数乘法和二次实数加法;一次复数加法则需二次实数加法。每运算一个X(k)需要4N 次复数乘法及2N+2(N-1)=2(2N-1)次实数加法。所以整个DFT运算总共需要4N^2 次实数乘法和N*2(2N-1)=2N(2N-1)次实数加法- Dsp to achieve the fast Fourier transform (FFT)
C28x_FPU_LIB
- TI C283X系列dsp浮点运算库,主要包括实数FFT复数FFT及IFFT-The TI the C283X family dsp floating-point arithmetic library, including real number FFT complex FFT and IFFT
TI-c28-FFT-library
- TI的FFT库函数,最高可完成1024个点的FFT运算,适用于C28***系列DSP-This FFT library contains generic FFT module (32-bit implementation) for real/complex FFT.
Complex-FFT-transform
- 在stm32f407上利用官方的库文件进行复数的傅里叶变换-The use of official documents in the library performs a complex Fourier transform stm32f407