搜索资源列表
DigitRec
- 数字识别系统源代码: 第一步:训练网络。使用训练样本进行训练 第二步:识别。首先,打开图像(256色);再次,进行归一化处理,点击“一次性处理”;最后,点击“R”或者使用菜单找到相应项来进行识别。识别的结果显示在屏幕上,同时也输出到文件result.txt中。 该系统的识别率一般情况下为90%。 此外,也可以单独对打开的图片一步一步进行图像预处理工作,但要注意,每一步工作只能执行一遍,而且要按顺序执行。 具体步骤为:“256色位图转为灰度图”-“灰度图二值化”-“
digital-recognise
- 数字识别代码 第一步:训练网络。使用训练样本进行训练。(此程序中也可以不训练,因为笔者已经将训练好的网络参数保存起来了,读者使用时可以直接识别)第二步:识别。 首先,打开图像(256色) 再次,进行归一化处理。点击“一次性处理” 最后,点击“R”或者使用菜单找到相应项来进行识别识别的结果显示在屏幕上,同时也输出到文件result.txt中 该系统的识别率一般为90% 另外,也可以单独对打开的图片一步一步进行图像预处理工作。但要注意,每一步工作只能执行一遍,而且要按顺序执行。步骤为:“256色位图
szsbxtydm
- 数字识别系统源代码.rar 第一步:训练网络。使用训练样本进行训练。(此程序中也可以不训练,因为笔者已经将训练好的网络参数保存起来了,读者使用时可以直接识别) 第二步:识别。首先,打开图像(256色);再次,进行归一化处理,点击“一次性处理”;最后,点击“R”或者使用菜单找到相应项来进行识别。识别的结果显示在屏幕上,同时也输出到文件result.txt中。 该系统的识别率一般情况下为90%。 此外,也可以单独对打开的图片一步一步进行图像预处理工作,但要注意
demo
- 增值税发票抵扣联字符识别中的图像倾斜校正方法,很有用
DigitalRecognitioncode
- 使用说明第一步:训练网络。使用训练样本进行训练。(此程序中也可以不训练,因为笔者已经将训练好的网络参数保存起来了,读者使用时可以直接识别) 第二步:识别。首先,打开图像(256色);再次,进行归一化处理,点击“一次性处理”;最后,点击“R”或者使用菜单找到相应项来进行识别。识别的结果显示在屏幕上,同时也输出到文件result.txt中。 该系统的识别率一般情况下为90 。 此外,也可以单独对打开的图片一步一步进行图像预处理工作,但要注意,每一步工作只能执行一遍,而且要按顺序执行
Neural-network-recognition-system
- 使用说明 第一步:训练网络。使用训练样本进行训练。 第二步:识别。首先,打开图像(256色);再次,进行归一化处理,点击“一次性处理”;最后,点击“R”或者使用菜单找到相应项来进行识别。识别的结果显示在屏幕上,同时也输出到文件result.txt中。 该系统的识别率一般情况下为90 。 此外,也可以单独对打开的图片一步一步进行图像预处理工作,但要注意,每一步工作只能执行一遍,而且要按顺序执行。 具体步骤为:“256色位图转为灰度图”-“灰度图二值化”-
DigitRec
- 使用说明 第一步:训练网络。使用训练样本进行训练。(此程序中也可以不训练,因为笔者已经将训练好的网络参数保存起来了,读者使用时可以直接识别) 第二步:识别。首先,打开图像(256色);再次,进行归一化处理,点击“一次性处理”;最后,点击“R”或者使用菜单找到相应项来进行识别。识别的结果显示在屏幕上,同时也输出到文件result.txt中。 该系统的识别率一般情况下为90 。 此外,也可以单独对打开的图片一步一步进行图像预处理工作,但要注意,每一步工作
SkewDetectionAndCorrectionMethod
- 文本图像在扫描输入时产生的倾斜现象会对后续的页面分割及光学字符识别(OCR)处理产生很大的影响,而传统的标准Hough变换虽然具有对噪声不敏感,不依赖于直线连续性的优点,但由于计算量偏大,速度慢,在实用时有较大的局限性.提出一种基于改进的Hough变换的文本图像倾斜校正方法,通过在变分辨率图像中采用不同的文本方向提取算法,及选择合理投票门限等改进Hough变换的措施,减小了由图像区域及文字笔画粗细所产生的对倾角判定的不利影响,并使用基于偏移值的方法实现页面倾斜的快速校正.实验结果表明,该算法实现
CorrectCarNoImageAndRegnize
- 一种车牌图像校正新方法 【摘要】因摄像机角度而造成的机动车牌图像倾斜会对其后继的字符分割与识别带来不利的影响。本文在分析了车牌倾斜模式的基础上,提出了一种基于最小二乘支持向量机(LS-SVM)的车牌图像倾斜校正新方法。通过LS-SVM线性回归算法求取坐标变换矩阵并对畸变图像进行旋转校正。主要方法:首先,将二值倾斜车牌图像中的像素转换为二维坐标样本,并构造图像数据集 再通过LS-SVM线性回归算法对该数据集进行回归,求取主要参数 最后,再由该参数转换为能反映图像倾斜方向的2维坐标变换矩阵。实验
plateidentify
- 车牌识别 opencv 1.先打开一幅图片然后按照顺序灰度化、二值化、灰度拉伸、车牌定位、二值化、倾斜校正、字符分割、训练神经网络、识别字符。 2.测试图像存储在当前目录的img下。 3.测试集、训练集、目标向量均存储在img下的文本文件中。-License plate recognition opencv The first open a picture and then follow the order of grayscale, binary, gray stretch,
license-plate-recognition-system-
- 1.先打开一幅图片然后按照顺序灰度化、二值化、灰度拉伸、车牌定位、二值化、倾斜校正、字符分割、训练神经网络、识别字符。 2.测试图像存储在当前目录的img下。 3.测试集、训练集、目标向量均存储在img下的文本文件中。-First open a picture in order graying, binarization, gray stretch, license plate location, binarization, skew correction and character s
图像二值化
- 二值化、灰度拉伸、车牌定位、二值化、倾斜校正、字符分割、训练神经网络、识别字符
source
- 1.首先单击载入图像菜单项(载入车辆图像),图像在images文件夹下面。 2.然后单击车牌定位与识别单项,依次进行车牌提取、倾斜校正、字符分割、字符识别。-1 First, click Load Image menu item (loaded vehicle image), the image in the images folder below. 2, and then click the individual license plate location and recognition
tilt-correction
- 汽车牌照识别系统中,校正倾斜车牌图像算法实现-Car license plate recognition system, tilt correction of license plate image algorithm
PlateIdentify
- 车牌字符识别C++程序 1.先打开一幅图片然后按照顺序灰度化、二值化、灰度拉伸、车牌定位、二值化、倾斜校正、字符分割、训练神经网络、识别字符。 2.测试图像存储在当前目录的img下。 3.测试集、训练集、目标向量均存储在img下的文本文件中。-C++ program license plate character recognition 1. Open a picture first and then follow the order of graying, binarizati
lpr-system
- 1.先打开一幅图片然后按照顺序灰度化、二值化、灰度拉伸、车牌定位、二值化、倾斜校正、字符分割、训练神经网络、识别字符。 2.测试图像存储在当前目录的img下。 3.测试集、训练集、目标向量均存储在img下的文本文件中。-1. Open a picture first and then according to the order gray, binarization, gray stretching, license plate localization, binarization, t
chepaishibieCPP
- 一、车型识别 1.首先单击车型识别菜单下的载入图像菜单项(载入背景和前景图像)。 2.然后单击车辆提取菜单项,依次进行图像做差、二值化、开运算、图像去噪、图像填充处理,轮廓提取。 3.最后单击车型识别菜单项,对车辆进行识别。 4.测试图像存储在img文件夹下,车型轮廓模板存储在contour文件夹下。 二、车牌识别 1.先打开一幅图片,然后在车牌定位与识别菜单下依次点击:车牌提取、倾斜校正、字符分割、字符识别。 2.测试图像存储在img文件夹下。
DeskewPOCR
- 本文图像倾斜校正以及文本字符识别,本程序可识别数字和字母,测试效果尚可。-In this paper image tilt correction and a text character recognition, this program can recognize numbers and letters. test result is good.
14_车牌识别系统
- 1.首先单击载入图像菜单项(载入车辆图像),图像在images文件夹下面。 2.然后单击车牌定位与识别单项,依次进行车牌提取、倾斜校正、字符分割、字符识别。 注:本程序使用的是OpenCV2.1版本(First click the load image menu item(load the vehicle image), which is under the images folder. 2. The license plate extraction, tilt correction, c
图像处理人民币识别
- 本设计为基于MATLAB的人民币识别系统。带有一个GUI界面。先利用radon进行倾斜校正,根据不同纸币,选择不同维度的参数识别纸币金额,有通过RGB分量识别100元; 通过面额图像的宽度识别1元、5元;通过构建矩形结构体识别10元 ;通过RGB分量识别 20元 与 50元。