搜索资源列表
featureOfDWT
- Discrete Wavelet Transform,[1]离散小波变换是指在特定子集上采取缩放和平移的小波变换,是一种兼具时域和频域多分辨率能力的信号分析工具。此变换运用可以缩放平移的小波代替固定的窗进行计算分析,主要应用于信号编码和数据压缩-Discrete Wavelet Transform, [1] the discrete wavelet transform is adopted in a specific subset of the zoom and pan on the wavel
Release
- 闲时无聊,搭了一个基于深度神经网络的手写数字识别系统。该系统在手写数字数据库mnist测试达到了99.22 的准确率。整个系统基于C++开发,可以很方便的移植到其他平台。 其中手写数字数据库mnist(http://yann.lecun.com/exdb/mnist/),有60000个训练样本数据集和10000个测试用例。它是由Google实验室的Corinna Cortes和纽约大学柯朗研究所的Yann LeCun建立的一个手写数字数据库。同时它是nist数据库的一个子集。
Image-Annotation
- 目前主题回归多模式潜在狄利克雷分配(tr-mmLDA),一个新颖的统计主题模型的图像和视频注释的任务。 在我们的新注释模型的核心是一种新颖的潜变量回归方法来捕获图像或视频特征和注释文本之间的相关性。 我们的方法不是在两个数据模态之间共享一组潜在主题,如在对应关系LDA的公式中,我们的方法引入了回归模块来关联两组主题,其捕获更一般的关联形式,并允许主题的数量 2个数据模态不同。 我们证明tr-mmLDA对2个标准注释数据集的功率:一个5000图像子集的COREL和一个2687图像的LabelMe数
ransac
- RANSAC算法的输入是一组观测数据,一个可以解释或者适应于观测数据的参数化模型,一些可信的参数。 RANSAC通过反复选择数据中的一组随机子集来达成目标。被选取的子集被假设为局内点,并用下述方法进行验证: 1.有一个模型适应于假设的局内点,即所有的未知参数都能从假设的局内点计算得出。 2.用1中得到的模型去测试所有的其它数据,如果某个点适用于估计的模型,认为它也是局内点。 3.如果有足够多的点被归类为假设的局内点,那么估计的模型就足够合理。 4
双峰法阈值分割
- 双峰法阈值分割。阈值分割法是一种基于区域的图像分割技术,原理是把图像象素点分为若干类。图像阈值化分割是一种传统的最常用的图像分割方法,因其实现简单、计算量小、性能较稳定而成为图像分割中最基本和应用最广泛的分割技术。它特别适用于目标和背景占据不同灰度级范围的图像。它不仅可以极大的压缩数据量,而且也大大简化了分析和处理步骤,因此在很多情况下,是进行图像分析、特征提取与模式识别之前的必要的图像预处理过程。图像阈值化的目的是要按照灰度级,对像素集合进行一个划分,得到的每个子集形成一个与现实景物相对应的区