搜索资源列表
otsu111
- Otsu算法步骤如下: 设图象包含L个灰度级(0,1…,L-1),灰度值为i的的象素点数为Ni ,图象总的象素点数为N=N0+N1+...+N(L-1)。灰度值为i的点的概率为: P(i) = N(i)/N. 门限t将整幅图象分为暗区c1和亮区c2两类,则类间方差σ是t的函数: σ=a1*a2(u1-u2)^2 (2) 式中,aj 为类cj的面积与图象总面积之比,a1 = sum(P(i)) i->t, a2 = 1-a1 uj为类cj的均值,u1 = sum(i*P(
N-Gram-LM
- 该程序基于Bi-Gram模型算法思想对一训练文本中的词汇建立语言模型,而后对测试文本中的语句进行预测出现概率-The program is based on Bi-Gram model algorithm ideas on a training text vocabulary build language model, and then the text of the statement of the test to predict the probability of occurrence