搜索资源列表
a009
- 利用线性神经网络进行自适应预测 利用函数adapt对线性网络进行自适应训练,在线修正网络的权值和阈值,这样对于时变信号,网络就可以及时跟踪其变化,即可对时变信号序列进行预测。 -linear adaptive neural network prediction using linear function adapt to the network adaptive training , the online network that the weights and threshold
WordRecognizeVc++Res
- 第一次使用识别程序时,可以直接运行Release目录下的可执行文件,然后对图片目录中的测试图片进行读入、识别。当然也可以自行用训练样本训练网络,不过要注意训练样本的选择,否则可能识别率很低。训练样本选择的原则是,尽可能的有代表性,在训练时间不至于太长的情况下训练样本数目尽量多。-first use of the identification procedures, they can run the Release directory of executable files, Then the c
szsb
- 源代码是识别程序的, 因为已经保存了训练好的网络权值,所以第一次使用识别程序时,可以直接运行\\\\Release目录下的可执行文件,然后对图片目录中的测试图片进行读入、识别。 当然读者也可以自行用训练样本训练网络,不过要特别注意训练样本的选择,否则可能造成识别率很低。训练样本选择的原则是,尽可能的有代表性,在训练时间不至于太长的情况下,训练样本数目尽量多。
JpgDll
- 已经保存了训练好的网络权值,所以第一次使用识别程序时,可以直接运行\\\\Release目录下的可执行文件,然后对图片目录中的测试图片进行读入、识别。 当然读者也可以自行用训练样本训练网络,不过要特别注意训练样本的选择,否则可能造成识别率很低。训练样本选择的原则是,尽可能的有代表性,在训练时间不至于太长的情况下,训练样本数目尽量多。
chap11
- 本目录主要包括:文档和两个源代码。 其中一个源代码是识别程序的,另一个是一个矩阵类库的,书里面也使用过,所以一并附上。 因为已经保存了训练好的网络权值,所以第一次使用识别程序时,可以直接运行\\\\Release目录下的可执行文件,然后对图片目录中的测试图片进行读入、识别。 当然读者也可以自行用训练样本训练网络,不过要特别注意训练样本的选择,否则可能造成识别率很低。训练样本选择的原则是,尽可能的有代表性,在训练时间不至于太长的情况下,训练样本数目尽量多。
DigitalIdentification
- 本目录主要包括:文档和两个源代码。 其中一个源代码是识别程序的,另一个是一个矩阵类库的,书里面也使用过,所以一并附上。 因为已经保存了训练好的网络权值,所以第一次使用识别程序时,可以直接运行\\Release目录下的可执行文件,然后对图片目录中的测试图片进行读入、识别。 当然读者也可以自行用训练样本训练网络,不过要特别注意训练样本的选择,否则可能造成识别率很低。训练样本选择的原则是,尽可能的有代表性,在训练时间不至于太长的情况下,训练样本数目尽量多。-err
wyLogistics
- 本系统主要实现了以下功能: 通过网站,全面展示企业的形象。 通过系统流程图全面介绍企业的服务项目。 实现对车辆来源的管理。 实现对固定客户的管理。 通过发货单编号,可以详细查询到物流配货的详细信息。 由于操作人员的计算机知识普遍较差,要求网站有良好的操作界面。 当外界环境(停电、网络病毒)干扰本系统时,系统可以自动保护原始数据的安全。 -T
113172210SVD
- SVD随着计算机网络的不断发展,多媒体信息的版权保护问题变得十分突出,已成为一个非常紧迫的议题。数字水印技术是实现版权保护的一种非常有效的方法,已经成为信息隐藏领域的一个热门方向。本文着重讨论了数字水印技术在数字图像中的应用,特别地,对于基于神经网络和SVD的自适应的数字水印技术进行了深入的研究与实验。首先比较全面地介绍了数字水印技术的发展历史、现状、基本模型、特征、分类、现有的主要的算法和应用,并对数字水印的发展前景做出了一个展望。接着阐述了神经网络和奇异值分解( SVD)的相关理论。利用图像
NeuralrecognitionSystem
- 基于神经网络的文字识别系统 本目录主要包括:文档和两个源代 其中源代码是识别程序的,另一个是矩阵类库的。 已经保存了训练好的网络权值,所以第一次使用识别程序时,可以直接运行Release目录下的可执行文件,然后对图片目录中的测试图片进行读入、识别。当然也可以自行用训练样本训练网络,不过要注意训练样本的选择,否则可能识别率很低。训练样本选择的原则是,尽可能的有代表性,在训练时间不至于太长的情况下训练样本数目尽量多。-Based on neural network characte
chap11
- 本目录主要包括:文档和两个源代码。 其中一个源代码是识别程序的,另一个是一个矩阵类库的,书里面也使用过,所以一并附上。 因为已经保存了训练好的网络权值,所以第一次使用识别程序时,可以直接运行\\Release目录下的可执行文件,然后对图片目录中的测试图片进行读入、识别。 当然读者也可以自行用训练样本训练网络,不过要特别注意训练样本的选择,否则可能造成识别率很低。训练样本选择的原则是,尽可能的有代表性,在训练时间不至于太长的情况下,训练样本数目尽量多。-本目录主要包括
chap11
- 本目录主要包括:文档和两个源代码。 其中一个源代码是识别程序的,另一个是一个矩阵类库的,书里面也使用过,所以一并附上。 因为已经保存了训练好的网络权值,所以第一次使用识别程序时,可以直接运行\\Release目录下的可执行文件,然后对图片目录中的测试图片进行读入、识别。 当然读者也可以自行用训练样本训练网络,不过要特别注意训练样本的选择,否则可能造成识别率很低。训练样本选择的原则是,尽可能的有代表性,在训练时间不至于太长的情况下,训练样本数目尽量多。 - Thi
chap11
- 本目录主要包括:文档和两个源代码。 其中一个源代码是识别程序的,另一个是一个矩阵类库的,书里面也使用过,所以一并附上。 因为已经保存了训练好的网络权值,所以第一次使用识别程序时,可以直接运行\\Release目录下的可执行文件,然后对图片目录中的测试图片进行读入、识别。 当然读者也可以自行用训练样本训练网络,不过要特别注意训练样本的选择,否则可能造成识别率很低。训练样本选择的原则是,尽可能的有代表性,在训练时间不至于太长的情况下,训练样本数目尽量多。 -This
ColorQuantization
- 针对色调在颜色量化时容易出现偏差,提出了一种基于直方图特性的颜色量化算法,在颜色量化时对色调进行修正,并采用脉冲耦合神经网络对颜色量化结果进行分割验证.-For color in the color quantization error prone, a feature based on the color histogram quantization algorithm, when the color quantization for color correction, and using p
vc_num_recognize
- 本目录主要包括:文档和两个源代码。 其中一个源代码是识别程序的,另一个是一个矩阵类库的,书里面也使用过,所以一并附上。 因为已经保存了训练好的网络权值,所以第一次使用识别程序时,可以直接运行\\Release目录下的可执行文件,然后对图片目录中的测试图片进行读入、识别。 当然读者也可以自行用训练样本训练网络,不过要特别注意训练样本的选择,否则可能造成识别率很低。训练样本选择的原则是,尽可能的有代表性,在训练时间不至于太长的情况下,训练样本数目尽量多。-This di
optical--flow
- 做光流相关项目时收集的网络资源汇总,希望对大家有帮助。-Optical flow-related items do collect aggregate network resources, we want to help.
Map-matching-model-at-complex-roads
- 车辆导航离不开导航电子地图,地图匹配方法是连接卫星定位信息与导航电子地图的桥梁,即通过一定 的算法,根据定位信息,在导航电子地图上确定出车辆当前所行驶的道路,并在地图上实时准确地显示车辆 的位置[1]. 一套匹配准确率高、实时性好、易于工程实现的地图匹配算法是优秀车载导航产品的重要保 障[2 - 3]. 目前,大多数导航产品仅采用独立的GPS 定位方式,地图匹配方法也大部分采用基于点的投影算法, 算法简单,没有将道路的网络特征考虑进来,特别在面对复杂道路时,容易出现匹配错误,造成
opengl_qt_test
- 本次试验的目的很简单,只是显示一个窗口,可以通过F1键值来切换全屏显示和普通屏显示,并当按下ESE键时退出程序。窗口的颜色背景和透视效果(其实该试验都没用上)等用opengl来实现,主要是为后面的学习写了个框架,其实这里主要是重写了3个函数:initializeGL() paintGL() resizeGL() 这3个函数都是QGLWidget内部的虚函数。 本次试验是按照网络上NeHe写的最著名的opengl英文教程:http://nehe.gamedev.net/ 和对应的中文教程:ht
BPNetRecognition
- 源代码code是识别程序的,源代码mat是矩阵类库的。 已经保存了训练好的网络权值,所以第一次使用识别程序时,可以直接运行Release目录下的可执行文件,然后对图片目录中的测试图片进行读入、识别。当然也可以自行用训练样本训练网络,不过要注意训练样本的选择,否则可能识别率很低。训练样本选择的原则是,尽可能的有代表性,在训练时间不至于太长的情况下训练样本数目尽量多。-The source code code identification procedures, source code m
a009
- 利用线性神经网络进行自适应预测利用函数adapt对线性网络进行自适应训练,在线修正网络的权值和阈值,这样对于时变信号,网络就可以及时跟踪其变化,即可对时变信号序列进行预测。-linear adaptive neural network prediction using linear function adapt to the network adaptive training , the online network that the weights and thresholds, so for
VCPPCODErecognize
- 基于神经网络的文字识别系统 本目录主要包括:文档和两个源代 其中源代码是识别程序的,另一个是矩阵类库的。已经保存了训练好的网络权值,所以第一次使用识别程序时,可以直接运行Release目录下的可执行文件,然后对图片目录中的测试图片进行读入、识别。当然也可以自行用训练样本训练网络,不过要注意训练样本的选择,否则可能识别率很低。训练样本选择的原则是,尽可能的有代表性,在训练时间不至于太长的情况下训练样本数目尽量多。 -Neural network character recognitio