搜索资源列表
ImprovedDL
- 这是一篇SCI文章《改善字典学习:多字典更新和系数重用》里的Matlab代码,包含了OMP、Batch-OMP、CoROMP等匹配跟踪算法代码以及改进的K-SVD字典学习算法代码,是图像稀疏表示研究方向重要的源代码,有助于大家学习和改进。-This file folder reproduces the Figures for paper:"Improving Dictionary Learning: Multiple Dictionary Updates and Coefficient Reus
KSVD_Matlab_ToolBox
- 稀疏表示字典的训练方法,由压缩感知领域大神M. Elad公布的matlab工具包-matlab tools for K-SVD
KSVD
- 字典 学习 稀疏表示 传统的K-svd训练字典及稀疏稀疏,解压即可用。-Dictionary learning sparse representation of the traditional K- SVD training dictionary and sparse sparse, decompression can use.
K-SVD-algorithm
- KSVD算法,对于字典训练很实用,并且,对于基于稀疏表示方法,可以提高精度-KSVD algorithm for dictionary training is very practical,And, based on sparse representation method, can improve the precision
CSR_Denoising
- 该算法首先通过字典学习得到含噪图像的冗余字典,然后对相似的图像块进行聚类构成块群,并通过迭代收缩和L1正则化约束,对同类的图像块在字典上进行稀疏表示,以达到降噪的目的。实验结果表明,在常规的图像处理上,本文提出的算法能较好的保留图像的结构信息,与K-SVD和BM3D等现有的流行算法相比,具有更高的峰值信噪比(PSNR)-It firstly get the redundant dictionary of a noised image by dictionary learning.Then,the
K-SVD_and_W_KSVD_Sparse_Representation
- 通过字典学习更新的方法,对图像信号进行稀疏化分解(Through the method of learning and updating the dictionary, the image signals are sparse decomposed)