搜索资源列表
-
0下载:
摘要:主成分分析(PCA)的人脸识别算法,以减少的特征向量是涉及到对抽象的特点,改进了主成分分析(一)iUumination算法的变化影响酶原sed.The方法是基于上减低与正常化其相应的标准差的特征向量元素相关联的大特征值的特征向量的影响力的想法。耶鲁大学和耶鲁大学面临的数据库面对数据库B是用来验证-Abstract:In principal component analysis(PCA)algorithms for face recognition,to reduce the influen
-
-
3下载:
Kernel Entropy Component Analysis,KECA方法的作者R. Jenssen自己写的MATLAB代码,文章发表在2010年5月的IEEE TPAMI上面-Kernel Entropy Component Analysis, by R. Jenssen, published in IEEE TPAMI 2010.
We introduce kernel entropy component analysis (kernel ECA) as a new method
-
-
0下载:
边缘检测算子
图像边缘信息主要集中在高频段,通常说图像锐化或检测边缘,实质就是高频滤波。我们知道微分运算是求信号的变化率,具有加强高频分量的作用。在空域运算中来说,对图像的锐化就是计算微分。由于数字图像的离散信号,微分运算就变成计算差分或梯度。图像处理中有多种边缘检测(梯度)算子,常用的包括普通一阶差分,Robert算子(交叉差分),Sobel算子等等,是基于寻找梯度强度。拉普拉斯算子(二阶差分)是基于过零点检测。通过计算梯度,设置阀值,得到边缘图像。(The image edge infor
-