搜索资源列表
利用OPENCV來實現高斯混合模型的背景相減
- 利用OPENCV來實現高斯混合模型的背景相減,可看到當前影像、前景及背景-OPENCV to achieve using GMM background subtraction, we can see the current image, foreground and background
lhgcxgmm.rar
- 自己采用opencv编写的程序,该程序主要实现运动目标的检测,采用背景减法里面的GMM混合高斯模型,Opencv prepared to adopt its own procedures, the procedures for major sports achieve target detection using background subtraction inside GMM Gaussian Mixture Model
BGFG_CODEBOOK
- 基于码书的运动目标检测是和混合高斯模型(MoG,GMM)类似的而简单有效的背景剪除方法,附件是VC++6.0编写的基于码书的运动目标检测,可直接读取摄像头,也可改为读取硬盘视频文件,需安装Opencv1.1-Codebook-based moving target detection and Gaussian mixture model (MoG, GMM) and a similar cut off the background simple and effective method of a
backmodel
- EM-GMM建立背景模型,用于运动物体检测,侵入检测等-EM-GMM background model set up for moving object detection, intrusion detection, etc.
LiuMixGauss
- 混合高斯模型背景建模,适用于视频跟踪,目标分割。 -GMM background modeling for video tracking, object segmentation.
GMM
- 建立了混合高斯模型,可以对静止背景下运动目标进行检测。-Gaussian mixture model is established, you can still detect moving target in the background.
Improved-GaussianBackground
- This is gaussian background mode document. This is adaptp GMM.
js_gmm_Lee
- 根据Lee与2005年发表的混合高斯模型背景建模的论文编写的源代码,可以作为对GMM算法改进的一个参考。-According to Lee s paper published in 2005 about GMM background modeling, it is written in C. It should be a reference for those who are intrested in GMM algorithm improvement.
BGFG_CODEBOOK
- 基于码书的运动目标检测是和混合高斯模型(MoG,GMM)类似的而简单有效的背景剪除方法,附件是VC++6.0编写的基于码书的运动目标检测,可直接读取摄像头,也可改为读取硬盘视频文件,需安装Opencv1.1,-Codebook-based moving target detection and Gaussian mixture model is (MoG, GMM) and a similar cut off the background simple and effective method
GMM
- 运用OpenCV2.0编辑混合高斯背景建模,能够较好的识别四个视频中的运动前景和背景,在一定程度的背景复杂度下,能够较准确检测。-The use OpenCV2.0 edit Gaussian mixture background modeling, and better identification of four video movement in the foreground and background, the background of a certain degree of com
DM6437-GMM
- 在DM6437上借助VLIB实现高斯背景建模-With the DM6437 on VLIB Gaussian background modeling
GMM
- 利用混合高斯进行背景建模,实现运动目标检测-Gaussian mixture background modeling, moving target detection
GMM
- 混合高斯背景建模,可以把连续帧图片前景与背景区分开来-Mixed gaussian background modeling, can continuous frame picture foreground and background to distinguish
GMm
- 混合高斯模型在运动检测中的应用,检测视频中的运动物体,做出其背景图像和前景图像-Gaussian mixture model in motion detection to detect moving objects in the video to make the background image and the foreground image
gmm
- 混合高斯模型使用K(基本为3到5个) 个高斯模型来表征图像中各个像素点的特征,在新一帧图像获得后更新混合高斯模型,用当前图像中的每个像素点与混合高斯模型匹配,如果成功则判定该点为背景点, 否则为前景点。通观整个高斯模型,他主要是有方差和均值两个参数决定,,对均值和方差的学习,采取不同的学习机制,将直接影响到模型的稳定性、精确性和收敛性。由于我们是对运动目标的背景提取建模,因此需要对高斯模型中方差和均值两个参数实时更新。为提高模型的学习能力,改进方法对均值和方差的更新采用不同的学习率 为提高在繁忙
GMM
- 利用混合高斯法将视频提取背景 并做降噪膨胀腐蚀处理 附有视频文件 -GMM method to extract the video and do the background noise expansion corrosion treatment with video files
classicalmog
- 根据GMM经典论文Adaptive background mixture models for real-time tracking写的matlab源码,利用GMM背景建模并提取车辆,完全忠实于原论文-According GMM classic paper Adaptive background mixture models for real-time tracking matlab source code written using GMM background modeling and ex
background-update-opencv
- 基于混合高斯的背景更新,并保存所获得的前景、背景图片 ,开发环境为Opencv2.3+vs2010-background update by GMM
GMM
- 高斯混合滤波建模,基于opencv,用于背景建模,前景检测-Gaussian mixture filter modeling, based on opencv, for background modeling, foreground detection
GMM背景建模c++
- 混合高斯建模用于背景建模,用于背景检测,速度不是很快....C++语言(GMM background dectect)