搜索资源列表
3DFaceRecognitionBasedon3DLBPandKernelDiscriminant
- 二维照片的人脸识别对光照、姿态和化妆等因素很敏感,故提出了一种将三维局部二值模式(3DLBP)和核享,1剐分析(KDA)相结合的三维人脸识剐方法.采用3DLBP描述人脸深度图像的特征,高斯核函数KDA 作为分类器,使用Chi平方统计改进高斯核函数、采用FRGC v2.0中2003春季采集的三维人脸库进行实验.实验结果表明,该 方法在每人2个训练样本时,识别率为91.8%,而PCA和3DLBP的识别率分别为60.4%和78.3%;当每人的训练样本数增至6个时,识别率为98.4%,而PCA和3D
kda-1.0
- 基于KDA的人脸识别首先利用核方法将人脸图像数据集非线性映射到一个高维特征空间中,然后在高维特征空间中利用LDA进行线性特征提取-Face recognition based on first use of nuclear KDA method will face image data set nonlinear mapping to a high dimensional feature space, and then use LDA in high-dimensional feature sp
KDA
- KDA 核fisher判别分析的分类算法-KDA to classify