搜索资源列表
KMEANS
- 在数字图象处理中处于基础地位的分类方法,这里的简单易懂
kmeans-image-segmentation
- K-means算法是一种动态聚类方法,这种方法先选择若干样本作为聚类的中心,在按某种聚类准则(通常采用最小距离原则)使各种样本向各个中心积聚,从而得到初始的分类,然后,判断分类的合理性,如果不合理,就修改分类,如此反复的修改聚类的迭代运算,直到合理为止。-K-means algorithm is a dynamic clustering method, this method, select the number of samples as a cluster center in the clu
kmeans--FCM-SOM
- 无监督分类方法,包括kmeans,som和fcm,非常好用-Unsupervised classification methods, including kmeans, som and fcm, very easy to use
Image-Classification-master
- 图像分类程序,此图像分类采用 SIFT + Kmeans 聚类的方法,然后调用 MLP 对其特征进行分类处理,速度实现比较快,正确率高-Image classification procedures, the use of this image classification method SIFT+ Kmeans clustering, and then call the MLP classification of its features, faster speed to achieve th
快速K-均值(kmeans)聚类图像分割算法源代码
- 本算法Kmeans可以用于非监督分类学习,用于图像处理、模式识别分类(The algorithm Kmeans can be used for unsupervised classification learning, for image processing, pattern recognition and classification.)