搜索资源列表
drtoolbox.tar
- 这是一个MATLAB工具箱包括32个降维程序,主要包括 pca,lda,MDS等十几个程序包,对于图像处理非常具有参考价值- ,This Matlab toolbox implements 32 techniques for dimensionality reduction. These techniques are all available through the COMPUTE_MAPPING function or trhough the GUI. The following techn
sift
- 1 SIFT 发展历程 SIFT算法由D.G.Lowe 1999年提出,2004年完善总结。后来Y.Ke将其描述子部分用PCA代替直方图的方式,对其进行改进。 2 SIFT 主要思想 SIFT算法是一种提取局部特征的算法,在尺度空间寻找极值点,提取位置,尺度,旋转不变量。 3 SIFT算法的主要特点: a) SIFT特征是图像的局部特征,其对旋转、尺度缩放、亮度变化保持不变性,对视角变化、仿射变换、噪声也保持一定程度的稳定性。 b) 独特性(Distinctive
CodesaImages
- 用于指纹检测等,利用图像的梯度方向,获得局部主导方向。Principal Component Analysis (PCA),包含有高斯金字塔分层,SVD奇异值分解,内含测试图像-Used for fingerprint detection, etc. Using the gradient direction of image to get local leading direction. Principal Component Analysis (PCA), contains a gaussi
drtoolbox.tar
- 用于降维的matlab工具包,包括PCA,LDA,LLE,等-Matlab Toolbox for Dimensionality Reduction Principal Component Analysis (PCA) Probabilistic PCA Factor Analysis (FA) Classical multidimensional scaling (MDS) Sammon mapping Linear Discriminant Analysis (LDA
pca-sift
- 具有含有最近年的改进sift研究文献,有便于深入了解局部特征研究领域-containing the research of modified sift local features, have benefit to deep learning the research field
