搜索资源列表
registr_MI_rigid
- 互信息图像配准,采用matlab实现,主要用于多模医学图像-mutual information image registration using Matlab to achieve, mainly for the Multi-Modal Medical Image
im_registr_MI
- 基于互信息的图像配准程序。用matlab编写的。有助于理解互信息。-based on mutual information of image registration procedures. Prepared using Matlab. Contribute to the mutual understanding of the information.
基于金字塔互信息配准
- 基于金字塔互信息配准的资料 包含论文,图像互信息,图像金字塔分解
entropy_four
- 计算互信息,非常详细,在网上很少有的-Calculation of mutual information, very detailed, in-line rare! ! !
image-registration
- 基于互信息的图片配准,matlab应用,可运行。但不是下载图片,而是mat信息。-Based on the mutual information of image registration, matlab, can run. But not download images, but mat information.
Rearch12345
- 互信息相关的一些资料和代码,比较有借鉴意义的,大家可以看一下-Mutual information related to some of the information, more reference, we can look at
hu-xin-xi
- 图像的匹配,基于互信息的,其中包含一些优化的算法,对学习图像的有帮助。-Image matching, based on mutual information, which contains a number of optimization algorithms, learning image.
Mutual_Information
- 研究了基于互信息测度的医学图像配准方法,提出了一种优化算法的改进。目的旨在于解决配准的精度和在基于互信息配准过程中的效率问题。提出的优化算法是将拟牛顿方法运用于多模医学图像配准中。实验结果说明这种改进的方法能有效提高配准的精度和效率问题,并得到好的实验效果。-Abstract: This paper presents a novel Optimized method for medical image registration, the purpose is to solve problems,
CalculateMI
- 图像互信息计算,用于两幅图像进行配准的过程中-this program can help calculate mutual information between two pictures
test_MI
- 通过先计算两幅图像的直方图采用两种不同的方法计算两幅图像的互信息-two different methods to culculate MI
hxihetd
- 基于互信息和梯度相似性图像配准代码,简单易学-The image registration algorithm based on mutual information and gradient
image-quality-evaluation
- 该matlab代码主要用于计算图像的边缘强度,信息熵,灰度均值,标准差(均方差MSE),均方根误差,峰值信噪比(psnr),空间频率(sf),图像清晰度,互信息(mi),结构相似性(ssim),交叉熵(cross entropy),相对标准差。- calculate the uation average gradient, edge strength, information entropy, gray are Value, standard deviation (mean square er
MIRT
- 医学图像配准工具箱,对用互信息图像配准有帮助-Medical image registration toolbox for image registration using mutual information helpful
CalculateMI
- 根据参考图像与浮动图像来计算图像间的互信息-According to the reference image and the floating image to calculate the mutual information between images